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Abstract

The computational complexity of winner determination un-
der common voting rules is a classical and fundamental topic
in the field of computational social choice. Previous work has
established the NP-hardness of winner determination under
some commonly-studied voting rules, such as the Kemeny
rule and the Slater rule. In a recent position paper, Baumeis-
ter, Hogrebe, and Rothe (2020) questioned the relevance of
the worst-case nature of NP-hardness in social choice and
proposed to conduct smoothed complexity analysis (Spiel-
man and Teng 2009) under Bläser and Manthey’s (2015)
framework.
In this paper, we develop the first smoothed complexity
results for winner determination in voting. We prove the
smoothed hardness of Kemeny and Slater using the clas-
sical smoothed runtime analysis, and prove a parameter-
ized typical-case smoothed easiness result for Kemeny. We
also make an attempt of applying Bläser and Manthey’s
(2015) smoothed complexity framework in social choice
contexts by proving that the framework categorizes an
always-exponential-time brute force search algorithm as be-
ing smoothed poly-time, under a natural noise model based
on the well-studied Mallows model in social choice and
statistics. Overall, our results show that smoothed complexity
analysis in computational social choice is a challenging and
fruitful topic.

1 Introduction
The computational complexity of winner determination un-
der common voting rules is a classical and fundamental
topic in the field of computational social choice (Brandt
et al. 2016, Section 1.2.3). A low computational complex-
ity of winner determination is desirable and is indeed the
case for many commonly-studied and widely-applied vot-
ing rules. On the other hand, winner determination has been
proved to be NP-hard for some classical voting rules such
as the Kemeny rule, the Slater rule, the Dodgson rule, and
the Young rule (Bartholdi, Tovey, and Trick 1989; Conitzer
2006; Rothe, Spakowski, and Vogel 2003).

To address the worst-case nature of NP-hardness,
average-case analysis was conducted to provide a more real-
istic analysis of algorithms. However, average-case analysis
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is sensitive to the choice of the distribution over input in-
stances, which may itself be unrealistic. To tackle this prob-
lem, Spielman and Teng (2004) introduced smoothed com-
plexity analysis to generalize and combine the worst-case
analysis and the average-case analysis. The idea is that the
input ~x of an algorithm Alg is often a noisy perception of the
ground truth input ~x∗. Consequently, let TimeAlg(~x) denote
the runtime of Alg when the input is ~x, the worst-case is an-
alyzed by assuming that an adversary chooses a ground truth
~x∗ and then Nature adds a noise ~ε (e.g. a Gaussian noise) to
it, so that the algorithm’s input becomes ~x = ~x∗ + ~ε. Then,
the expected runtime is evaluated according to the noise in-
troduced by Nature. Formally, the smoothed runtime of Alg
is defined as:

max~x∗ {E~ε [TimeAlg(~x∗ + ~ε)]}

This generalizes the worst-case runtime
max~x∗ [TimeAlg(~x∗)] and the average-case runtime
E~x∗∼π[TimeAlg(~x∗)] under a distribution π over inputs.

Smoothed complexity analysis has been applied to a wide
range of problems in mathematical programming, machine
learning, numerical analysis, discrete math, combinatorial
optimization, and equilibrium analysis and price of anar-
chy, see the survey by Spielman and Teng (2009). In a re-
cent position paper, Baumeister, Hogrebe, and Rothe (2020)
proposed to conduct smoothed complexity analysis in com-
putational social choice under Bläser and Manthey’s (2015)
framework and proposed a natural noise model that lever-
ages the celebrated Mallows (1957) model. However, we are
not aware of a technical result on the smoothed complexity
of winner determination in voting. The following question
remains open.

What is the smoothed complexity of winner determination
under commonly-studied voting rules?

As illustrated in the following example, the question is
highly relevant not only in the theory of computational so-
cial choice, but also in AI-aided group decision-making.
Example 1. Suppose the developer of an intelligent system
is planning to implement a voting rule for group decision
making. Kemeny is being considered, but the system needs
to estimate the practical runtime of computing Kemeny to
decide how much computational resource is sufficient for a
timely decision. The system can learn and predict agents’
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preferences from their past behavior, but is only able to do
it probabilistically—the agents’ preferences can be modeled
as their ground truth preferences plus some random noise. Is
there an algorithm for Kemeny whose expected runtime is
low, no matter what the “ground truth” is? �

Our Model. In this paper we answer the question for the
Kemeny rule and the Slater rule, for which winner deter-
mination means computing an optimal consensus ranking.
Successfully addressing the question requires appropriate
choices of (1) a noise model for social choice scenarios, and
(2) a notion of expected runtime.
(1) Noise model. We adopt the smoothed social choice
framework (Xia 2020), which covers a wide range of
models, including the Mallows-based model proposed
by Baumeister, Hogrebe, and Rothe (2020). In the frame-
work, for any number of alternatives and any number of
agents, denoted by m ≥ 3 and n ≥ 1 respectively, the ad-
versary chooses a distribution πj for each agent j from a set
of distributions Πm over all rankings.
(2) Expected runtime. Let ~π = (π1, . . . , πn) ∈ Πn

m de-
note the vector of distributions chosen by the adversary, one
per agent. Then, given an algorithm Alg, the adversary aims
at choosing ~π to maximize the expected runtime of Alg on
the profile P where each ranking is generated independently
from ~π, formally defined as follows.

R̃TΠm(Alg,m, n) = sup~π∈Πnm
EP∼~π TimeAlg(P ) (1)

In (1), the expectation is taken over randomly-generated pro-
file P according to the distributions ~π set by the adversary.
Because the size of the input of Alg is the size of P , i.e.,
Θ(nm logm), we desire R̃TΠm(Alg,m, n) to be polynomial
in m and n. Following the convention in statistics and the
notation in (Xia 2020), for anym ≥ 3, we use a single-agent
preference modelMm = (Θm,L(Am),Πm) to model the
adversary’s capability, where Θm is the parameter space and
L(Am) is the set of all rankings over m alternatives.

Note that when m is a constant, many commonly-studied
voting rules, including Kemeny and Slater, are easy to com-
pute. Therefore, to meaningfully analyze the smoothed com-
plexity, we will consider an infinite series of models ~M =
{Mm = (Θm,L(Am),Πm) : m ≥ 3}, following the con-
vention in average-case complexity theory (Bogdanov and
Trevisan 2006) and the smoothed complexity theory pro-
posed by Bläser and Manthey (2015).
Our Contributions. We conduct the smoothed analysis ac-
cording to (1) and prove smoothed hardness results for Ke-
meny (Theorem 1) and Slater (Theorem 2), respectively.
Both theorems state that for a large class of models, if a
smoothed poly-time algorithm exists, then RP=NP, which
is considered very unlikely to hold.

Then, we consider parameterized typical-case smoothed
complexity and prove a mildly positive result in Theorem 3,
which implies that for a large class of Mallows-based mod-
els, if the average Kendall Tau’s distance in the central rank-
ings and the average dispersion parameters are not too large,
then the dynamic programming algorithm for Kemeny pro-
posed by Betzler et al. (2009) runs in poly-time with high
probability.

Finally, we make an attempt of applying Bläser and Man-
they’s (2015) framework in our model in Proposition 1.
According to our understanding, the always-exponential-
time brute force search algorithm for Kemeny and Slater is
smoothed poly-time (in the sense of (Bläser and Manthey
2015), see Definition 8) w.r.t. a large class of models includ-
ing the model proposed by Baumeister, Hogrebe, and Rothe
(2020).
Related Work and Discussions. We are not aware of a pre-
vious technical result on the smoothed complexity of social
choice problems. As discussed above, Baumeister, Hogrebe,
and Rothe (2020) proposed to conduct smoothed complexity
analysis in computational social choice and proposed a natu-
ral Mallows-based model for such analysis. The authors also
suggested that smoothed analysis can be done for analyzing
ties and paradoxes in social choice.

Xia (2020) independently proposed to conduct smoothed
analysis in social choice, provided a general framework
for doing so, and proved dichotomous characterizations for
Condorcet’s paradox and the ANR impossibility theorem to
vanish in the smoothed sense. Our model adopts the noise
model by Xia (2020) combined with formulation of the
worst average-case runtime (1) as done by Spielman and
Teng (2009). We emphasize that (Spielman and Teng 2009)
used a different noise model from the one used in this paper.

Our paper aims at making the first technical attempt
of smoothed complexity analysis in computational social
choice, and overall our results show that the topic is
highly challenging and fruitful. The seemingly paradoxi-
cal smoothed efficiency of brute force search under Bläser
and Manthey’s (2015) framework (Proposition 1) is indeed
not technically surprising and is deliberately allowed, as
Bläser and Manthey (2015) commented. See more techni-
cal discussions after Proposition 1. Therefore, this result
does not mean that Bläser and Manthey’s (2015) theory
is wrong or inconsistent, but instead, it can be viewed as
a call for future research in the theory of smoothed com-
plexity analysis and statistical models in social choice con-
texts. The smoothed hardness of Kemeny (Theorem 1) and
Slater (Theorem 2) are negative news and the parameter-
ized typical-case smoothed efficiency (Theorem 3) is pos-
itive news. Proof techniques developed for these theorems
may be useful in future work.

There is a large body of literature on the computa-
tional complexity of Kemeny. The corresponding opti-
mization problem, KEMENY RANKING, was proved to
be NP-hard (Bartholdi, Tovey, and Trick 1989) and PNP

‖ -
complete (Hemaspaandra, Spakowski, and Vogel 2005).
Approximation algorithms (Ailon, Charikar, and Newman
2008; van Zuylen and Williamson 2007), PTAS (Kenyon-
Mathieu and Schudy 2007), and fixed-parameter efficient al-
gorithms (Betzler et al. 2009; Karpinski and Schudy 2010;
Cornaz, Galand, and Spanjaard 2013) for KEMENY RANK-
ING have been developed. Practical algorithms have been
proposed (Davenport and Kalagnanam 2004; Conitzer, Dav-
enport, and Kalagnanam 2006) and Ali and Meila (2012)
compared the performance of 104 algorithms. Conitzer
(2006) proved that the decision variant of Slater is NP-hard
and proposed an efficient heuristic algorithm for computing
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SLATER RANKING.
There is a large body of literature on smoothed com-

plexity of algorithms (Spielman and Teng 2009). Bläser
and Manthey (2015) established a complexity theory for
smoothed complexity analysis by defining the counterparts
to P and NP, called SMOOTHED-P and DIST-NPpara re-
spectively, together with a smoothed reduction and com-
plete problems. Their definitions are closely related to
the average-case complexity theory established by Levin
(1986). Our result in Section 5 suggests it may not be suit-
able for computational social choice. Our Theorem 1 and 2
illustrate the hardness of KEMENY RANKING and SLATER
RANKING using the same pattern in (Huang and Teng 2007),
which states that the existence of a smoothed poly-time al-
gorithm would lead to a surprise in complexity theory.

2 Preliminaries
Basics of Voting. For any m ≥ 3, let Am = {a1, . . . , am}
denote the set of m alternatives. A (preference) profile P ∈
L(Am)n is a collection of n rankings (linear orders). Let
WMG(P ) denote the weighted majority graph of P , which
is a directed weighted graph whose vertices are Am and for
each pair of alternatives a, b, the weight on edge a→ b, de-
noted by wP (a, b), is the winning margin of a over b in their
pairwise competition. That is, wP (a, b) = −wP (b, a) =
#{R ∈ P : a �R b} −#{R ∈ P : b �R a}. Let UMG(P )
denote the unweighted majority graph of P , which is the
unweighted directed graph obtained from WMG(P ) by re-
moving edges whose weights are ≤ 0.

The Kendall’s Tau distance between two linear orders
R,W ∈ L(A), denoted by KT(R,W ), is the number of
pairwise disagreements between R and W . Given a pro-
file P and a linear order R, the Kemeny score of R in P
is
∑
W∈P KT(R,W ) and the Slater score of R in P is

KT(R,UMG(P )), where KT is extended to measure the dis-
tance between a linear order and an unweighted graph in the
natural way—any pair of alternatives {a, b} such that a � b
in the linear order but b → a in the graph contribute one to
KT. The Kemeny rule (respectively, the Slater rule) aims at
selecting the linear order with the minimum Kemeny score
(respectively, Slater score) in P . The corresponding winner
determination problems are defined as follows.
Definition 1 (KEMENY RANKING and SLATER RANKING).
Given m ≥ 3, n ∈ N, and P ∈ L(Am)n, in KEMENY
RANKING (respectively, SLATER RANKING), we are asked
to compute a ranking with minimum Kemeny score (respec-
tively, Slater score).
Definition 2 (Single-agent preference model (Xia 2020)).
A single-agent preference model for m alternatives is de-
noted byMm = (Θm,L(Am),Πm), where Πm is the set of
distributions over L(Am) indexed by the parameter space
Θm. Mm is neutral if for any θ ∈ Θm and any permu-
tation σ over Am, there exists θ′ ∈ Θm such that for all
V ∈ L(Am), we have πθ(V ) = πθ′(σ(V )). Mm is P-
samplable if there exists a poly-time sampling algorithm for
each distribution in Πm.

Technically Mm is completely determined by Πm. Fol-
lowing the convention in statistics, we still keep the parame-

ter space Θm and sample space L(Am) in the definition. For
example, let us recall the definition of single-agent Mallows
model as follows.

Definition 3. In a single-agent Mallows model MMa,m,
Θm = L(Am) × (0, 1], where in each (R,ϕ) ∈ Θm, R
is called the central ranking and ϕ is called the disper-
sion parameter. For any W ∈ L(Am), we have π(R,ϕ) =

ϕKT(R,W )/Zϕ, where Zϕ =
∏m
i=2(1−ϕi)

(1−ϕ)m−1 is the normaliza-

tion constant. For any 0 < ϕ ≤ ϕ ≤ 1, we let M[ϕ,ϕ]

Ma,m
denote the sub-model whose parameter space is L(Am) ×
[ϕ,ϕ].

It is not hard to verify that M[ϕ,ϕ]

Ma,m is neutral and P-
samplable (Doignon, Pekeč, and Regenwetter 2004).1

When there are n ≥ 2 agents, the adversary chooses
~π = (π1, . . . , πn) ∈ Πn

m, and then agent j’s ranking will
be independently (but not necessarily identically) generated
from πj .

Example 2. Suppose m = 3 and n = 2, and the model is
M[0.3,1]

Ma,3 . Then, the adversary can set the first (respectively,
second) agent’s distribution to be the Mallows distribution
given ground truth (a1 � a2 � a3, 0.4) (respectively, (a3 �
a2 � a1, 0.8)). Then, the probability of generating profile
(a2 � a1 � a3, a1 � a3 � a2) is Pr(a2 � a1 � a3|(a1 �
a2 � a3, 0.4))× Pr(a1 � a3 � a2|(a3 � a2 � a1, 0.8)) =
0.4
Z0.4
× 0.82

Z0.8
≈ 0.026.

As another example, the Mallows-based model proposed
by Baumeister, Hogrebe, and Rothe (2020) corresponds to
the single-agent Mallows model with fixed ϕ, i.e.,M[ϕ,ϕ]

Ma,m.

Because KEMENY SCORE is in P when m is bounded
above by a constant, the smoothed complexity analy-
sis ought to be done for variable m. Therefore, fol-
lowing (Bläser and Manthey 2015), we are given a se-
ries of single-agent preference models ~M = {Mm =
(Θm,L(Am),Πm) : m ≥ 3}. In particular, we will focus
on the Mallows series, defined as follows.

Definition 4. For any 0 < ϕ ≤ ϕ ≤ 1, we let ~M[ϕ,ϕ]

Ma =

{M[ϕ,ϕ]

Ma,m : m ≥ 3} denote the Mallows series.

In most part of this paper (except Section 5), we focus
on the classical smoothed poly-time algorithms proposed
by Spielman and Teng (2009) w.r.t. ~M.

Definition 5 (Smoothed poly-time). Given a series
of single-agent preference models ~M = {Mm =
(Θm,L(Am),Πm) : m ≥ 3}, an algorithm Alg is smoothed
poly-time, if for any m ≥ 3 and n ≥ 1, R̃TΠm(Alg,m, n) as
defined in (1) is polynomial in m and n.

1We note that in this paper ϕ and ϕ are constants that do not de-
pend on m. We believe that this is a natural model in social choice,
and the case of variable ϕ and ϕ is an interesting direction for fu-
ture work.
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3 Smoothed Hardness of Kemeny and Slater
In this section, we follow the classical smoothed runtime
analysis (Definition 5) to analyze KEMENY RANKING and
SLATER RANKING. We first recall the orthogonal decom-
position of weighted directed graphs (Young 1974; Zwicker
2018).

A WMG Gcyc is called a cycle, if the absolute weight
of any edge is 0 or 1, and the edges with positive weights
forms a cycle. Let a ∈ Am, a WMG Ga is called a co-
cycle centered at a, if for any b ∈ Am such that b 6= a,
wGa(a, b) = −wGa(b, a) = 1 and all other edges have
weight 0.

Note that any WMG G can be viewed as a vector in
R
m(m−1)

2 whose components are indexed by (i1, i2), where
1 ≤ i1 < i2 ≤ m, with value wG(ai1 , ai2). Given any pair
of WMGs G1 and G2, we define their dot product as

G1 ·G2 =
∑

1≤i1<i2≤m

wG1
(ai1 , ai2)× wG2

(ai1 , ai2)

Let Vcyc ⊆ R
m(m+1)

2 (respectively, Vco ⊆ R
m(m+1)

2 ) de-
note the linear span of cycles (respectively, co-cycles). It has
been proved that Vcyc and Vco are orthogonal, dim(Vcyc) =(
m−1

2

)
(all 3-cycles containing a1 in the increasing direc-

tion of subscripts constitute a non-orthogonal basis) and
dim(Vco) = m − 1 (co-cycles centered at any fixed set of
m−1 alternatives constitute a non-orthogonal basis). An or-
thogonal decomposition of a WMG G is a decomposition of
G into its projections to Vcyc and Vco, respectively.

We will sometimes use fractional profiles, i.e., the
weights on the linear orders are allowed to be arbitrary non-
negative numbers and can be larger than one. For example,
P = 3

2@[a � b] + 1
2@[b � a] is a fractional profile for

m = 2, where the weight on a � b is 3
2 and the weight on

b � a is 1
2 . WMG, UMG, and KT distance can be naturally

extended to fractional profiles, where the total weights are
used to replace total number counts.

A special case is the fractional profile that corresponds to
a distribution π, where the weight on each linear order R
is its probability in the distribution, i.e., π(R). The follow-
ing example illustrates a fractional profile and its orthogonal
decomposition.
Example 3. Let θ = (a1 � a2 � a3, ϕ) denote a param-

eter in M[ϕ,ϕ]

Ma,3 . WMG(θ), which is the WMG of the frac-
tional profile represented by the distribution corresponding
to θ, and its orthogonal decomposition are shown in Fig-
ure 1. Note that the weight on the co-cycle centered at a3 is
negative.

a3

a1

a2

!"#
!$#

!"#
!$#

(!"#)(!$'#$#()
(!$#)(!$#$#()
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Figure 1: The WMG of (a1 � a2 � a3, ϕ) in MMa,3 and its
orthogonal decomposition.

To present the theorem, we formally define some assump-
tions on the single-agent preference model ~M as follows.
The first assumption states that ~M is easy to sample, the
second assumption states that the model is neutral (see Def-
inition 2), and the third assumption is introduced for tech-
nical reasons, which requires that ~M is rich enough in the
sense that there exists a distribution π ∈ Πm whose WMG
has a non-negligible 3-cycle component in its orthogonal de-
composition.

Assumption 1. ~M = {Mm = (Θm,L(Am),Πm) : m ≥
3} satisfies the following assumptions:

(i) For any m ≥ 3,Mm is P-samplable, i.e., it admits a
poly-time sampling algorithm.

(ii) For any m ≥ 3,Mm is neutral, i.e., for each distri-
bution π ∈ Πm and any distribution σ over the alternatives,
we have σ(π) ∈ Πm.

(iii) There exist constants k ≥ 0 and A > 0 such that for
any m ≥ 3, there exist π3c ∈ Πm such that WMG(π3c) has
a 3-cycle component G3c with WMG(π3c) ·G3c >

A
mk

.

The first condition is the “most natural restriction” on
general distributions (Bogdanov and Trevisan 2006, p. 17),
which is less restrictive than the commonly-studied P-
computable distributions (Bogdanov and Trevisan 2006,
p. 18). The second and third conditions imply that ~M is
rich enough. As we will see in Example 4, a large class of
models, including the Mallows series (Definition 4), satisfy
Assumption 1.

Theorem 1 (Smoothed Hardness of KEMENY RANKING).
For any series of single-agent preference models ~M that sat-
isfies Assumption 1, if there exists a smoothed poly-time al-
gorithm for KEMENY RANKING w.r.t. ~M, then NP=RP.

Proof. The theorem is proved by contradiction. Suppose
for the sake of contradiction that a smoothed poly-time
algorithm Alg for KEMENY RANKING exists, we will
prove that there exists an efficient randomized algorithm
for the NP-hard problem EULERIAN FEEDBACK ARC SET
(EFAS) (Perrot and Pham 2015). An instance of EFAS is
denoted by (G, t), where t ∈ N and G is a directed un-
weighted Eulerian graph, which means that there exists a
closed Eulerian walk that passes each edge exactly once.
We are asked to decide whether G can be made acyclic by
removing no more than t edges.

Given a single-agent preference model, a (fractional) pa-
rameter profile PΘ ∈ Θn

m is a collection of n > 0 parame-
ters, where n may not be an integer. Note that PΘ naturally
leads to a fractional preference profile, where the weight on
each ranking represents its total weighted “probability” un-
der all parameters in PΘ. Therefore, WMG and UMG can
be naturally extended to parameter profiles.

The high-level idea of the proof is the following. For any
EFAS instance (G, t), we will construct a fractional param-
eter profile PΘ

G whose WMG is the same as the WMG equiv-
alent of G, where the weight on each edge in G is 1 or −1,
depending on its direction. Then, we sample a profile P ′
from PΘ

G and try to run Alg to compute the Kemeny ranking
R∗. If Alg successfully returns R∗ in less than three times
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of its expected runtime (which is polynomial), then we pro-
ceed to check whether R∗ leads to a YES answer to (G, t).
Otherwise we give a No answer. More precisely, we give a
NO answer if the ordering of vertices according to R∗ has
more than t backward edges inG, or Alg fails to terminate in
time. Clearly this polynomial-time procedure always returns
NO if (G, t) is a NO instance. We then prove that a YES
instance will receive a YES answer with probability at least
1/2, which means that EFAS is in RP and therefore proves
the theorem.

Formally, the proof proceeds in three steps. In Step 1, we
use permutations of π3c guaranteed by Assumption 1 to con-
struct a fractional parameter profile PΘ

G3c
whose WMG is a

3-cycle, denoted byG3c. In Step 2, we use PΘ
G3c

to construct
PΘ
G . In Step 3, we show that Alg can be leveraged to Algo-

rithm 1 to prove that EFAS is in RP as discussed above.
Step 1. Construct a parameter profile PΘ

G3c
whose WMG

is a 3-cycle. W.l.o.g. let G3c = a1 → a2 → a3 → a1

denote the target 3-cycle. Let σ1 denote an arbitrary cyclic
permutation among {a1, a2, a3} and let σ2 denote an arbi-
trary cyclic permutation among A \ {a1, a2, a3}. We define
the following set of 6(m− 3) permutations.

OG3c = {σi1 ◦ σt2, σi1 ◦ σ−t2 : 1 ≤ i ≤ 3, 1 ≤ t ≤ m− 3},
where σi1 represents the application of σ1 for i times. We
note that OG3c

can be naturally applied to linear orders, frac-
tional profiles, distributions over L(Am), parameters in Θm,
and weighted majority graphs. For example, for each linear
order R, OG3c

(R) is a set of 6(m− 3) linear orders that are
obtained from applying the 6(m− 3) permutations in OG3c

to R. For each (fractional) profile P , OG3c
(P ) is a set of

profiles obtained from the union of the image of σ∗(P ) for
all σ∗ ∈ OG3c . It follows that the total weight of linear or-
ders in OG3c(P ) is 6(m−3)n, where n is the total weight of
linear orders in P . When a permutation σ over A is applied
to a parameter θ, the outcome is another parameter θ′ such
that πθ′ = σ(πθ), where we recall that πθ′ and πθ are the
distributions represented by θ′ and θ, respectively. The exis-
tence of such θ′ is guaranteed by the neutrality of the model
(see Definition 2).

Let θ3c ∈ Θm denote the parameter corresponding to
π3c (the distribution guaranteed by Assumption 1 (iii)), i.e.,
πθ3c = π3c. Let QΘ

G3c
= OG3c(θ3c) denote the parame-

ter profile obtained from θ3c by applying permutations in
OG3c . Some properties of QΘ

G3c
are described in the follow-

ing claim, whose proof follows after the definition of QΘ
G3c

.
All missing proofs can be found in the full version of this
paper on arXiv.

Claim 1. |QΘ
G3c
| = O(m), QΘ

G3c
consists of O(m) types

of parameters. WMG(QΘ
G3c

) consists of the following two
types of edges. (1) There are three edges a1 → a2,
a2 → a3, a3 → a1, each has weight 2(m − 3)α,
where α = WMG(π3c) · G3c. (2) There are edges from
{a1, a2, a3} to {a4, . . . , am} whose weights are β =
2
∑

(d1,d2)∈{a1,a2,a3}×{a4,...,am} wπ3c
(d1, d2).

|QΘ
G3c
| and the types of parameters used in QΘ

G3c
will be

crucial later in proving that Algorithm 1 runs in polynomial

time. If β = 0, then we let PΘ
G3c

= QΘ
G3c

. If β > 0, then
we will provide a gadget soon to “cancel” edges between
{a1, a2, a3} and Am\{a1, a2, a3}. For any alternative a, let
σa denote the permutation such that σa(a) = a and the re-
maining alternatives are permuted in the cyclic way in the
increasing order of their subscripts. That is, σa = ai1 →
ai2 → · · · → aim−1

→ ai1 , where i1 < · · · < im−1 and
ai → aj means that σa(ai) = aj . We let η denote the per-
mutation that switches ais and aim−s for all 1 ≤ s ≤ m−1.
For example, when m = 5, σa1 is the cyclic permutation
a2 → a3 → a4 → a5 → a2 and ηa1 switches two pairs of
alternatives: (a2, a5) and (a3, a4).

Definition 6. For any alternative a, let Oa denote the fol-
lowing set of 2(m− 1) permutations over Am.

Oa = {σia, σia ◦ ηa : 1 ≤ i ≤ m− 1}

Like OG3c
, Oa can be naturally applied to linear orders,

fractional profiles, distributions over L(Am), parameters in
Θm, and weighted majority graphs. Let PΘ

a = Oa(θ3c). We
have the following claim.

Claim 2. |PΘ
a | = 2(m − 1) and PΘ

a consists of 2(m − 1)
types of parameters. WMG(PΘ

a ) is a co-cycle whose cen-
ter is a and the absolute weight on any non-zero edge is
2
∑

(d1,d2)∈{a}×A\{a} wπ3c
(d1, d2).

Let PΘ
1 = Oa1(QΘ

G3c
). We have the following claim..

Claim 3. |PΘ
1 | = O(m2) and PΘ

1 consists of O(m2) types
of parameters. WMG(PΘ

1 ) is a co-cycle whose center is a1

and the absolute weight on any non-zero edge is 2(m−3)β.

For any pair of alternative a, d, let σa↔d denote the per-
mutation that exchanges a and d. Because the WMG of
PΘ

1 is a co-cycle centered at a1, σa1↔d(P
Θ
1 ) is a param-

eter profile whose WMG is a co-cycle centered at d. We
are now ready to define the fractional parameter profile
PΘ
G3c

whose WMG resembles G3c. Recall that we defined
α = WMG(π3c) ·G3c in Claim 1.

Definition 7. Let PΘ
G3c

denote the fractional parameter pro-
file that consists of (1) 1

2(m−3)α copies of QΘ
G3c

, and (2) for
each d ∈ {a4, . . . , am}, 1

4(m−3)2α copies of σa1↔d(P
Θ
1 ).

We have the following claim about PΘ
G3c

.

Claim 4. |PΘ
G3c
| = O(mk) and PΘ

G3c
consists of O(m3)

different types of parameters. WMG(PΘ
G3c

) = G3c.

Step 2. Construct a parameter profile PΘ
G for EFAS.

Because Mm is neutral, for any 3-cycle G′ = ai1 →
ai2 → ai3 → ai1 we can apply a permutation σG′ that
maps as to ais (s = 1, 2, 3) on PΘ

G3c
, which means that

WMG(σG′(P
Θ
G3c

)) resembles G′.
It is not hard to verify that any cycle of length T can

be obtained from the union of (T − 2) individual 3-cycles,
which can be computed in O(m2) time. Therefore, given
the EFAS instance (G, t), we first compute G =

⋃S
s=1G

′
s,

where each G′s is a 3-cycle, and S ≤
(
m
2

)
. Then, we

5746



ALGORITHM 1: Algorithm for EFAS.
Input: An EFAS instance (G, t), Alg for KEMENY
RANKING whose smoothed runtime is T .
Compute a parameter profile PΘ∗

G according to (2).
Sample a profile P ′ from ~Mm given PΘ∗

G and run
Alg on P ′.

if Alg returns R∗ within 3T time and R∗ is a solution
to (G, t) then

return YES
else

return NO
end

let PΘ
G =

⋃S
s=1 σG′s(P

Θ
G3c

). It follows from Claim 4 that
|PΘ
G | = O(mk+2), PΘ

G consists of O(m5) types of parame-
ters, and WMG(PΘ

G ) = G.
Step 3. Use Alg to solve EFAS. Let K = 11 + 2k, which
means that K > 9. We first define a parameter profile
PΘ∗
G of n = Θ(mK) parameters that is approximately mK

|PΘ
G |

copies of PΘ
G up to O(m5) in L∞ error. Formally, let

PΘ∗
G = bPΘ

G ·
mK

|PΘ
G |
c (2)

Let n = |PΘ∗
G |. Because the number of different types of

parameters in PΘ∗
G is O(m5), we have n = mK − O(m5),

‖WMG(PΘ∗
G ) − WMG(PΘ

G · mK

|PΘ
G |

)‖∞ = O(m5), and

‖WMG(PΘ∗
G )−G · m

K

|PΘ
G |

)‖∞ = O(m5).
We now prove that Alg can be leveraged to provide an RP

algorithm (Algorithm 1) for EFAS.
Notice that sampling P ′ from PΘ∗

G takes polynomial time
because ~M is P-samplable (Assumption 1 (i)). It follows
that Algorithm 1 is a polynomial-time randomized algo-
rithm. Clearly, if (G, t) is a NO instance, then Algorithm 1
returns NO. Therefore, to prove that Algorithm 1 is an RP
algorithm it suffices to prove that if (G, t) is a YES instance,
then Algorithm 1 returns YES with > 1

2 probability.

Let Gn = G · m
K

|PΘ
G |

. We first prove in the following claim
that with exponentially small probability WMG(P ′) is dif-
ferent from Gn by more than Ω(m

K+1
2 ).

Claim 5. Pr(‖WMG(P ′) − Gn‖∞ > Ω(m
K+1

2 )) <
exp−Ω(m).

Proof. We first show that for each pairwise comparison b

vs. c, Pr(|wP ′(b, c) − wG(b, c) · m
K

|PΘ
G |
| = Ω(m

K+1
2 )) <

exp−Ω(m), then apply union bound to all pairwise compar-
isons. Notice that wP ′(b, c) can be viewed as the sum of
n independent (not necessarily identical) bounded random
variables, each of which corresponds to the pairwise com-
parison between b and c in a ranking—if b � c in the rank-
ing, then the random variable takes 1, otherwise the random

variable takes −1. By Hoeffding’s inequality for bounded
random variables, we have:

Pr(|wP ′(b, c)− E(wP ′(b, c))| > Ω(m
K+1

2 ))

< exp{−Ω(m
K+1

2 /n)2n2

4n
} = exp{−Ω(m)}

Also notice that E(wP ′(b, c)) = wPΘ∗
G

(b, c) and

‖WMG(PΘ∗
G )−Gn‖ = O(m5) = O(m

K+1
2 ).

Suppose (G, t) is a YES instance. That is, there exists a
ranking R′ whose KT distance to G is no more than t. Due
to Markov’s inequality, Alg returns a Kemeny ranking R∗
with probability ≥ 2

3 . We now prove that R∗ is a solution to
(G, t) with probability 1− exp−Ω(m).

Note that for any rankingR, |KT(R,P ′)−KT(R,Gn)| =
O(m

K+5
2 ) holds with probability 1 − exp−Ω(m), which

follows after applying Claim 5 and the union bound
to all Θ(m2) pairwise comparisons. In this case R∗

is a solution to (G, t), because if it is not, then
KT(R∗, Gn) − KT(R′, Gn) > mK

|PΘ
G |

= Ω(mK−k−2). We

note that |KT(R′, P ′) − KT(R′, Gn)| = O(m
K+1

2 ) ×
O(m2) = O(m

K+5
2 ) and |KT(R∗, P ′) − KT(R∗, Gn)| =

O(m
K+5

2 ), which means that KT(R∗, P ′) − KT(R′, P ′) =

Θ(mK−k−2) − 2O(m
K+5

2 ) > 0 (because K = 11 + 2k),
which contradicts the optimality of R∗.

Therefore, Algorithm 1 returns YES with probability at
least 2

3−exp−Ω(m), which proves that EFAS is in RP. Since
EFAS is NP-hard (Perrot and Pham 2015) and RP⊆NP. It
follows that RP=NP.

We now prove a similar theorem for SLATER RANKING
with an additional condition. The theorem requires one more
richness assumption in addition to Assumption 1, which can
be viewed as the co-cycle counterpart to (iii)—the new as-
sumption requires that Πm contains a distribution whose
WMG has a non-negligible co-cycle component. While this
assumption is quite technical, we expect it to hold for many
models in social choice, as Example 4 shows.

(iv) There exist constants k∗ ≥ 0 and B > 0 such that for
any m ≥ 3, there exist πco ∈ Πm such that WMG(πco) has
a co-cycle component Gco with WMG(πco) ·Gco > B

mk∗
.

Theorem 2 (Smoothed Hardness of SLATER RANKING).
For any series of single-agent preference models ~M that
satisfies Assumption 1 and (iv), if there exists a smoothed
poly-time algorithm for SLATER RANKING w.r.t. ~M, then
NP=RP.

Proof sketch. The high-level idea of the proof is similar to
the proof of Theorem 1. The difference is that in this proof
we use the TOURNAMENT FEEDBACK ARC SET (TFAS)
problem, which is NP-hard (Alon 2006; Conitzer 2006).
Since it is unknown whether EULERIAN TOURNAMENT
FEEDBACK ARC SET is NP-hard, in a TFAS instance (G, t)
it is possible that G is not Eulerian. Therefore, we need a
co-cycle component to construct a parameter profile whose
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WMG is G. Moreover, the weight on the co-cycle compo-
nent cannot be too small, otherwise the construction will not
be polynomial. Condition (iv) is used to guarantee the exis-
tence of a desirable co-cycle component as described.

Slightly more formally, the proof proceeds in four steps.
Step 1 is the same as the Step 1 in the proof of Theorem 1. In
Step 2, we use permutations of πco, which is guaranteed by
(iv), to construct a parameter profile whose WMG is a co-
cycle. The reduction from TFAS will be presented in Step
3. In Step 4 we show that a smoothed poly-time algorithm
for SLATER RANKING can be used to prove that TFAS is in
RP. �

The following example shows that Assumption 1 and (iv)
hold for a large class of Mallows-based models.

Example 4. We show that for any ϕ 6= 1, ~M[ϕ,ϕ]

Ma satisfies
Assumption 1 and (iv). (i) and (ii) have been discussed in
Example 3. For any ϕ ∈ [ϕ,ϕ] ∩ (0, 1), we show that (iii)
and (iv) hold for π = (a1 � · · · � am, ϕ).

For (iii), let G3c = a1 → a2 → a3 → a1. Mallows
(1957) proved that under Mallows’ model, the probability
for a � b only depends on m,ϕ, and the difference in
the ranks of a and b in the central ranking. Therefore, for
any m, WMG(π) · G3c = 2 · 1

1+ϕ −
1+2ϕ

(1+ϕ)(1+ϕ+ϕ2) =
1+2ϕ2

(1+ϕ)(1+ϕ+ϕ2) = Θ(1), see Figure 1. This means that
k = 0 and A = Θ(1).

For (iv), it is not hard to verify that k∗ = 0 andB = Θ(1)
for the co-cycle centered at a1.

4 Parameterized Typical-Case Smoothed
Complexity of KEMENY RANKING

Following the idea in probably polynomial smoothed com-
plexity of perceptron (Blum and Dunagan 2002), in this sec-
tion we prove a similar result on the parameterized typical-
case smoothed complexity of Betzler et al. (2009)’s dynamic
programming algorithm for KEMENY RANKING, denoted
by AlgKS, under the Mallows series ~MMa (Definition 4). Un-
der ~MMa, for convenience, sometimes we rewrite a param-
eter ~θ ∈ Θn

m as (P, ~ϕ), where P ∈ L(Am)n is called the
central profile and ~ϕ ∈ (0, 1]n is called the dispersion vec-
tor. For any n-profile P , the average KT distance is defined
as

KT(P ) =
1

n(n− 1)

∑
R1,R2∈P

KT(R1, R2)

The high-level idea behind Theorem 3 below is as fol-
lows. Betzler et al. (2009) proposed AlgKS and proved that
for any profile P , its runtime is O(exp(KT(P ))poly(mn)).
Therefore, to show that with high probability AlgKS runs in
polynomial time, it suffices to show that with high probabil-
ity, KT(P ′) is upper bounded by a constant, where P ′ is a
randomly generated profile according to ~MMa given some
central profile P and dispersion vector ~ϕ. Intuitively, when
P is sufficiently centralized, i.e., KT(P ) is upper bounded
by a constant, and ~ϕ is not too large on average, P ′ should
also be sufficiently centralized. The formal relationship be-

tween centralization of P , ~ϕ, probability for AlgKS to be in
P , and the runtime is stated in the following theorem.
Theorem 3 (Parameterized Typical-Case Smoothed
Complexity of KEMENY RANKING). For any m ≥ 3,
n ≥ 1, any central profile P ∈ L(Am)n, any disper-
sion vector ~ϕ ∈ (0, 1]n, and any t > 0, let ϕ∗ =
1
n

∑
j≤n min(m2ϕj ,

mϕj
(1−ϕj)2(1−ϕ2

j )
) and d = dKT(P ) +

2ϕ∗ + te. We have

PrP ′∼(P,~ϕ)(TimeAlgKS
(P ′) > O(16d(d2n2m2 logm))

< exp

(
− 2nt2

m2(m− 1)2

)
Theorem 3 contains a parameter t to control the tradeoff

between the probability and the runtime guarantee. A larger
t corresponds to a larger d, which corresponds to a higher
upper bound on the runtime. Meanwhile, the probability for
the runtime of AlgKS to exceed the upper bound in the theo-
rem decreases exponentially in t.

Proof. Betzler et al. (2009) proved that the runtime of AlgKS

is O(16d̄(d̄2n2m2 logm)), where d̄ = dKT(P ′)e. There-
fore, it suffices to prove that with high probability, the aver-
age KT distance in P ′ is at most d.

We first prove a claim on the expected KT distance be-
tween the central ranking and randomly generated ranking.

Claim 6. For any single-agent Mallows model and any θ =
(R,ϕ), we have

EW∼θKT(R,W ) ≤ min(m2ϕ,
mϕ

(1− ϕ)2(1− ϕ2)
)

The proof is done by directly calculating
EW∼θKT(R,W ) using Mallows (1957)’s closed-form
formulas for probability of pairwise comparisons.

Claim 7. We have:

Pr(KT(P ′) > KT(P ) + 2ϕ∗+ t) ≤ exp

(
− 2nt2

m2(m− 1)2

)
Proof. For any pair of agents 1 ≤ j1 < j2 ≤ n, let
R′j1 and R′j2 denote their rankings in P ′, respectively. We
have KT(R′j1 , R

′
j2

) ≤ KT(Rj1 , Rj2) + KT(R′j1 , Rj1) +

KT(R′j2 , Rj2). Therefore, E(KT(P ′)) = KT(P ) +
(n−1)

∑n
j=1 KT(R′j ,Rj)

n(n−1)/2 = KT(P ) +
2
∑n
j=1 KT(R′j ,Rj)

n . No-
tice that for each j ≤ n, KT(R′j , Rj) is a ran-
dom variable in [0,m(m − 1)/2] whose mean is
no more than min(m2ϕj ,

mϕj
(1−ϕj)2(1−ϕ2

j )
). Let Sn =

2
∑n
j=1 KT(R′j , Rj). We have that E(Sn) ≤ 2ϕ∗n. There-

fore, for any t > 0, by Hoeffding’s inequality, we have:

Pr(
Sn
n
> 2ϕ∗ + t) ≤ Pr(

Sn
n
> E(

Sn
n

) + t)

≤Pr(Sn > E(Sn) + nt) ≤ exp

(
− 2(nt)2

n(m(m− 1))2

)
= exp

(
− 2nt2

m2(m− 1)2

)
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The theorem follows after Claim 7.

We note that ϕ∗ ≤ m2

n

∑n
j=1 ϕj and ϕ∗ ≤

m
n

∑n
j=1

ϕ
(1−ϕ)2(1−ϕ2) , and the former upper bound is the

average dispersion of the agents multiplied by m2. Nei-
ther upper bound implies the other. The former is stronger
when some ϕj is close to 1. The latter is stronger when all
ϕj = O( 1

m ). We immediately obtain the following corollary
by combining the former upper bound with Theorem 3.

Corrollary 1. Given ~MMa,m, any n = Ω(m4), and any
parameter (P, ~ϕ) such that (1) KT(P ) = O(logm+ log n),
and (2) ~ϕ·~1

n = O( logm+logn
m2 ), we have:

Pr
P ′∼(P,~ϕ)

(TimeAlgKR
(P ′) = ω(poly(mn)t)) = exp(−Ω(t2))

Corollary 1 states that when n is sufficiently large, and
the average KT distance in P and the average dispersion are
not too large, with high probability AlgKR solves KEMENY
RANKING in polynomial time.

5 An Attempt to Apply Bläser and
Manthey’s (2015) Framework

In Bläser and Manthey’s (2015) framework, the smoothed
runtime of an algorithm is analyzed w.r.t. a perturbation
model over the input, denoted byD = {D`,x,φ}, where each
D`,x,φ is a distribution over data, x represents the “ground
truth”, φ is the maximum probability of any data point un-
der D`,x,φ, and ` is the size of x. Let N`,x denote the size
of support of D`,x,φ, i.e. the number of data points that re-
ceive non-zero probability under D`,x,φ. Bläser and Man-
they (2015) defined the following notion of smoothed poly-
time algorithms (some technical assumptions are omitted for
better presentation).

Definition 8 (BM-Smoothed poly-time (Bläser and Man-
they 2015)). Given a perturbation model D = {D`,x,φ},
an algorithm Alg is BM-smoothed poly-time if there exists
ε > 0 such that for all D`,x,φ ∈ D,

Ey∼D`,x,φ(TimeAlg(y)ε) = O(` · φ ·N`,x) (3)

In words, Alg is BM-smoothed poly-time if for every dis-
tribution D`,x,φ, the expected runtimeε for some constant
ε > 0 is linear in n and φ · N`,x. As commented by Bläser
and Manthey (2015), this does not mean that the expected
runtime of the algorithm is polynomial in the input size.
While this formulation is adopted to build a sound theory
for smoothed complexity analysis, we feel that its relevance
in social choice is not clear.

Brute force search is BM-smoothed poly-time. Let BF
denote the brute force search algorithm that first computes
the Kemeny scores (respectively, Slater scores) for all m!
rankings, then chooses a ranking with the minimum score.
Note that the runtime of BF is Ω(m!) for any input. The
following simple observation states that BF is BM-smoothed
poly-time for a large class of models.

Proposition 1. For any fixed 0 < ϕ ≤ ϕ < 1, when m ≥
2(3−ϕ)/(1−ϕ), BF is BM-smoothed poly-time for KEMENY

RANKING and SLATER RANKING w.r.t. ~M[ϕ,ϕ]

Ma , where the
dispersion parameter is discretized.

Proof. We first translate ~M[ϕ,ϕ]

Ma to the D`,x,φ notation.
For any m, n, and any ~π ∈ Πn

m, let x = ~π represent
the central rankings and dispersion parameters for the n
agents. Therefore, ` = Θ(nm logm), N`,x = (m!)n, and
φ ≥ ( 1

Zϕ
)n ≥ (1 − ϕ)n(m−1). Let ε = 1

2 . For any

n-profile P ′ ∈ L(Am)n, TimeBF(P ′) = O(m!nm2) for
both KEMENY RANKING and SLATER RANKING. There-
fore, EP ′∼D`,x,φ(TimeBF(P ′)ε) = O((m!nm2)ε). To prove
the proposition, it suffices to prove that for any m >
2(3−ϕ)/(1−ϕ) and n ≥ 1,

nm logm(m!(1− ϕ)m−1)n > (m!nm2)1/2

This is done in the following series of inequalities.

m > 2(3−ϕ)/(1−ϕ) ⇔ m logm > m(
2

1− ϕ
+ 1)

⇒(m+
1

2
) logm−m > (m− 1)

2

1− ϕ

⇒ logm! > (m− 1)
2

1− ϕ
(Stirling’s formula)

⇒(m!)1− 1
2n (1− ϕ)m−1 > 1

⇒nm logm(m!(1− ϕ)m−1)n > (m!nm2)1/2

Proposition 1 may appear paradoxical because it calls
the always-exponential-time BF (BM-smoothed) poly-time.
Technically, this is allowed in Bläser and Manthey’s (2015)
framework. As Bläser and Manthey (2015) commented, the
expected runtimeε in (3) is allowed to be exponentially large
when N`,xφ is exponentially large, i.e., the perturbation
(which corresponds to 1/φ) is relatively small compared to
the size of support of the distributions (i.e., N`,x). There-
fore, we believe that the real power of Bläser and Manthey’s
(2015) framework is in the analysis of scenarios where the
perturbation is large compared to the size of the support of
the distributions, i.e., N`,xφ is not too large. Unfortunately,

this is not the case for the Mallows-series model ~M[ϕ,ϕ]

Ma ,
which we believe to be a reasonable model for social choice.
It is possible that when ϕ and ϕ are allowed to change as m
increases, BF is no longer a smoothed-poly-time algorithm
in Bläser and Manthey’s (2015) framework.

6 Summary and Future Work
We prove the smoothed hardness of Kemeny and Slater, and
a parameterized typical-case smoothed easiness result for
Kemeny. An immediate open question is the smoothed com-
plexity of the Dodgson rule and the Young rule. Smoothed
complexity of other problems in computational social choice
is also an obvious open question as Baumeister, Hogrebe,
and Rothe (2020) pointed out.
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Broader Impact
This paper aims to understand the smoothed complexity of
computing commonly-studied voting rules, which are im-
portant tools for collective decision making. The results will
be important to multi-agent systems, where voting is used
to achieve consensus. Success of the research will benefit
general public beyond the CS research community because
voting is a key component of democracy.
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