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Abstract

The computational complexity of winner determination is a classical and important problem in com-

putational social choice. Previous work based on worst-case analysis has established NP-hardness of

winner determination for some classic voting rules, such as Kemeny, Dodgson, and Young.

In this paper, we revisit the classical problem of winner determination through the lens of semi-

random analysis, which is a worst average-case analysis where the preferences are generated from a

distribution chosen by the adversary. Under a natural class of semi-random models that are inspired

by recommender systems, we prove that winner determination remains hard for Dodgson, Young, and

some multi-winner rules such as the Chamberlin-Courant rule and the Monroe rule. Under another

natural class of semi-random models that are extensions of the Impartial Culture, we show that winner

determination is hard for Kemeny, but is easy for Dodgson. This illustrates an interesting separation

between Kemeny and Dodgson.

1 Introduction

Voting is one of the most popular methods for group decision-making. In large-scale, high-frequency group

decision-making scenarios, it is highly desirable that the winner can be computed in a short amount of time.

The complexity of winner determination under common voting rules is thus not only a classic theoretical

problem in computational social choice [15, chapter 4, 5], but also an important consideration in practice.

In this paper, we focus on several classic voting rules: the Kemeny rule, the Dodgson rule, and the

Young rule, whose winner determination problems are denoted as KEMENYSCORE, DODGSONSCORE, and

YOUNGSCORE, respectively. The Kemeny rule, which is closely related to the Feedback Arc Set problem [2,

1], is a classical method for recommender systems and information retrieval [19]. The Dodgson rule and the

Young rule have also been extensively studied in the literature [23, 34, 16, 15].

Previous work has established the (worst-case) NP-hardness of winner determination under the Kemeny

rule, the Dodgson rule, and the Young rule [5, 34]. Using average-case analysis, McCabe-Dansted et al.

[28] and Homan and Hemaspaandra [25] showed that DODGSONSCORE admits an efficient algorithm that

succeeds with high probability, where each ranking is generated i.i.d. uniformly, known as the Impartial

Culture (IC) assumption in social choice. Unfortunately, IC or generally any i.i.d. distribution has been

widely criticized of being unrealistic (see, e.g., [30, p. 30], [22, p. 104], and [26]). It remains unknown
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whether there exists an efficient algorithm for DODGSONSCORE beyond IC. This motivates us to ask the

following question:

What is the complexity of winner determination beyond worst-case analysis and IC?

One promising idea is to tackle this question through the lens of smoothed complexity analysis [37, 6],

a beautiful and powerful framework for analyzing the performance of algorithms in practice. Smoothed

analysis can be seen as a worst average-case analysis, where the adversary first arbitrarily chooses an in-

stance, and then Nature adds random noise (perturbation) to it, based on which the expected runtime of an

algorithm is evaluated. Smoothed analysis explains why the simplex method is fast despite its worst-case

exponential time complexity [36]. It has been successfully applied to many fields to understand the practical

performance of algorithms, see the survey by Spielman and Teng [37].

Smoothed analysis belongs to the more general approach of complexity analysis under semi-random

models [9, 20], where the problem instance contains an adversarial component and a random component.

In this paper, we adopt the semi-random model called the single-agent preference model [38], where the

adversary chooses a preference distribution for each agent from a set Π of distributions. Note that if Π
consists of only the uniform distribution, then the model is equivalent to IC. By varying Π, the model can

provide a smooth transition from average-case analysis to worst-case analysis. Under this model, Xia and

Zheng [41] proved the semi-random hardness of computing Kemeny ranking and Slater ranking with mild

assumptions. However, their hardness results do not imply hardness of KEMENYSCORE under the same

model, because KEMENYSCORE is easier than computing the Kemeny ranking (see Definition 2). The

semi-random complexity of the Dodgson rule and the Young rule were also left as open questions [41].

Our contributions. We provide the first set of results on the computational complexity of winner deter-

mination under the following two classes of semi-random models.

The first class of models are inspired by recommender systems and information retrieval, where the num-

ber of alternatives m can be very large and it is inefficient for an intelligent system to learn the total ranking.

In such cases, one often uses top-K ranking algorithms that only recover the top-K ranking with high ac-

curacy for K = o(m) [29, 17]. Similarly in social choice, the collected preference from an agent is more

robust over her few top-ranked alternatives and may be much more noisy over the remaining alternatives

(see Example 1). Formally, we capture such features in Assumption 1. Then, we prove in Theorem 1 and

Theorem 2 that DODGSONSCORE and YOUNGSCORE remain hard under Assumption 1 unless NP=ZPP.

Similar semi-random hardness results also hold for some multi-winner rules, i.e., the Chamberlin-Courant

rule and the Monroe rule (Theorem 3).

The second class of semi-random models are called α-Impartial Culture (α-IC for short, see Definition 4)

where α ∈ [0, 1]. They are a relaxation of IC such that a single ranking receives probability 1 − α and the

other rankings are uniformly distributed. When α is 1
O(poly(m)) away from 1, we illustrate an interesting

separation between the complexity of KEMENYSCORE and that of DODGSONSCORE: winner determination

is hard for KEMENYSCORE (Theorem 4) while being easy for DODGSONSCORE (Theorem 5).

1.1 Related Works and Discussions

Smoothed and semi-random analysis. Semi-random models have been widely adopted to analyse the

performance of algorithms in practice and to circumvent worst-case computational hardness in the field
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of combinatorial optimization [11, 21], mathematical programming [36], and recently in algorithmic game

theory [33, 14, 13, 10, 3]. We refer the readers to recent surveys of semi-random models [20] and beyond

worst-case analysis [35] for a comprehensive literature review. We mention here that the partial alternative

randomization model in Example 1 is inspired by the partial bit randomization model which has been applied

to smoothed complexity analysis [4] and smoothed competitive ratio analysis [7].

Recently, semi-random analysis has also been proposed in the field of social choice [6, 38].The smoothed

probability of paradoxes and ties, and strategyproofness in voting are studied [38, 39, 40, 18]. As mentioned

above, Xia and Zheng [41] studied complexity of computing Kemeny and Slater rankings under semi-

random models. We are not aware of other semi-random complexity results in computational social choice,

which motivates this work.

Beier and Vöcking [8] studied the case of the integer linear programs (ILPs) over the unit cube and

showed that a problem has polynomial smoothed complexity if and only if it admits a pseudo-polynomial

algorithm. Since winner determination under voting rules studied in this paper can also be formulated as

ILPs, one might be tempted to think that the results in [8] also apply to the single-agent preference model.

However, this is not true because they only considered continuous perturbation for real numbers, while the

set of rankings is discrete. Their conclusion works for discrete combinatorial optimization problems only

if the continuous noise is added to the so-called stochastic parameters that are real numbers, so that the

problem’s combinatorial structure remains unchanged, which is not the case of our setting.

Complexity of winner determination. There is a large body of literature on worst-case computational

complexity of winner determination under various voting rules. Bartholdi et al. [5] proved that computing

DODGSONSCORE and YOUNGSCORE are NP-hard, respectively. They also provided the NP-completeness

of KEMENYSCORE, which holds even for only four voters [19]. The problem of computing Dodgson winner,

Young ranking, and Kemeny ranking were proved to be ΘP
2 complete [23, 34, 24].

2 Model and Preliminaries

Basics of voting. Let Am = {a1, . . . , am} denote the set of m alternatives and L(Am) the set of rankings

(linear orders) over Am. A (preference) profile P ∈ L(Am)n is a collection of n agents’ rankings, which

is also called their preferences. Throughout the paper, we assume without loss of generality that m ≥ 3
since winner determination is easy for 2 alternatives. For any ranking R ∈ L(Am), we denote TopK(R)
the top-K ranking of R. For a permutation σ over Am and any distribution π over L(Am), we denote σ(π)
the permuted distribution where Prσ(π)(σ(R)) = Prπ(R) for all R ∈ L(Am).

The Dodgson rule, the Young rule and the Kemeny rule. The Condorcet winner of preference profile

P is defined as the alternative a ∈ Am who is preferred to every b ∈ Am by strictly more than half of the

agents. The Dodgson score of a in P is defined as the smallest number of sequential exchanges of adjacent

alternatives in rankings of P to make a the Condorcet winner. The Young score of a in P is defined as the

size of the largest subset of preferences where a is the Condorcet winner. The Dodgson rule chooses the

alternatives with the lowest Dodgson score as winners, and the Young rule chooses the alternatives with the

highest Young score as winners. The winner determination problems of the Dodgson rule and the Young

rule are defined as follows.
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Definition 1 ( DODGSONSCORE and YOUNGSCORE). Given P ∈ L(Am)n, a ∈ Am, and t ∈ N, in DODG-

SONSCORE (respectively, YOUNGSCORE), we are asked to decide whether the Dodgson score (respectively,

Young score) of a in P is at most (respectively, at least) t.

The Kendall’s Tau distance (KT distance) between two linear orders R,R′ ∈ L(A), denoted by KT(R,R′),
is the number of pairwise disagreements between R and R′. Given a profile P and a linear order R, the KT

distance between R and P is defined to be KT(P,R) =
∑

R′∈P KT(R,R′). The Kemeny score of an al-

ternative a in P is defined as the minimum KT distance between any linear order that ranks a at the top.

The Kemeny rule chooses the alternatives with the lowest Kemeny score. Besides, the Kemeny ranking is

defined as the ranking with minimum KT distance to P . The winner determination problem of the Kemeny

rule is defined as follows:

Definition 2 (KEMENYSCORE). Given P ∈ L(Am)n and t ∈ N, in KEMENYSCORE, we are asked to

decide if there exists an alternative a ∈ Am whose Kemeny score is at most t.

If we can compute the Kemeny ranking, then we can compute its KT distance to P in polynomial time

and then decides KEMENYSCORE. Thus KEMENYSCORE is easier than computing the Kemeny ranking.

Semi-random complexity analysis. We use the following semi-random model, proposed in [38] and used

for semi-radom complexity analysis in [41].

Definition 3 (Single-agent preference model [38]). A single-agent preference model for m alternatives is

denoted by Mm = (Θm,L(Am),Πm). Πm is a set of distributions over L(Am) indexed by a parameter

space Θm such that for each parameter θ ∈ Θm, πθ ∈ Πm is its corresponding distribution.

We say Mm is P-samplable if there exists a poly-time sampling algorithm for each distribution in Πm. It

is the “most natural restriction” on general distributions, which is less restrictive than the commonly-studied

P-computable distributions [12, p. 17,18]. We say Mm is neutral if for any π ∈ Πm and any permutation σ
over Am, we have σ(π) ∈ Πm. Note that winner determination under all the above voting rules is in P when

m is bounded above by a constant. Therefore, we are given a sequence of single-agent preference models
~M = {Mm = (Θm,L(Am),Πm) : m ≥ 3}. We say ~M is P-samplable (respectively, neutral) if Πm is

P-samplable (respectively, neutral) for any m ≥ 3.

We introduce the following generalization of the Impartial Culture model, which is P-samplable and

neutral.

Definition 4 (α-Impartial Culture). Fix α ∈ [0, 1]. α-Impartial Culture (α-IC) is a single-agent preference

model Mm = (Θm,L(Am),Πm) such that Θm = L(Am) and for each R ∈ L(Am), distribution πR is

defined as

Pr
R′∼πR

[R′] =
α

m!
+ (1− α)1[R′ = R],

where 1[R′ = R] = 1 if R = R′ and 1[R′ = R] = 0 otherwise. Fix ~α = (αm)m≥3 such that αm ∈ [0, 1]
for all m ≥ 3. Denote ~α-IC the sequence of models {αm-IC : m ≥ 3}. It is easy to see that ~α-IC is

P-samplable and neutral.

4



The semi-random profile P according to Mm is generated as follows. First, the adversary chooses

~π = (π1, . . . , πn) ∈ Πn
m. Then agent j’s ranking will be independently (but not necessarily identically)

generated from πj for any j ∈ [n]. The semi-random version of winner determination under ~M is defined

as follows, which is similar to the definition in a recent paper on smoothed hardness of two-player Nash

equilibrium [13].

Definition 5 (SEMI-RANDOM-DODGSONSCORE). Fix a sequence of single-agent preference models ~M.

Given alternative a ∈ Am, t ∈ N and a semi-random profile P drawn from Mm, we are asked to decide

whether the Dodgson score of a is at most t, with probability at least 1− 1
m .1

Definition 6 (SEMI-RANDOM-KEMENYSCORE). Fix a sequence of single-agent preference models ~M.

Given t ∈ N and a semi-random profile P drawn from Mm, we are asked to decide whether there exists an

alternative whose Kemeny score of a is at most t, with probability at least 1− 1
m .

The definition of SEMI-RANDOM-YOUNGSCORE is similar (See Appendix C).

3 Semi-Random Hardness of DODGSONSCORE and YOUNGSCORE

In many applications, such as recommender systems and information retrieval, the number of alternatives

m can be very large and it is inefficient for an intelligent system to learn the total ranking. In such cases,

one often uses Top-K ranking algorithms which only recover the top-K ranking with high accuracy for

K = o(m) [29, 17]. Similarly, the collected preference from an agent is more robust over her few top-

ranked alternatives and can be much more noisy over the remaining alternatives. Such features are captured

by Assumption 1 below. Informally, Assumption 1 states that there exists a distribution in Πm that does not

significantly “perturb” one top-K ranking for K = Θ(m
1

d ) where d ≥ 1.

Assumption 1 (Top-K concentration). A series of single-agent preference models ~M is P-samplable,

neutral, and satisfies the following condition: there exists a constant d > 1 such that for any sufficiently

large m and K = ⌈m
1

d ⌉, there exists A′ ⊆ Am, R′ ∈ L(A′), and π ∈ Πm, such that |A′| = K and

Pr
R∼π

(TopK(R) = R′) ≥ 1−
1

K
.

The following partial alternative randomization model, in the spirit of partial bit randomization model

[4, 7], satisfies Assumption 1. The partial bit randomization model applies to m-bits non-negative integer

by randomly flipping its m−K least significant bits while keeping its K most significant bits unchanged.

Example 1. The partial alternative randomization model is denoted by Mm(K) and has parameter space

L(Am). For any R ∈ L(Am), the distribution πR is obtained by uniformly at random perturbing the order

of the m−K least preferred alternatives in R and keeping the top-K ranking unchanged. For any constant

d and K ≥ m
1

d , the model is P-samplable, neutral and satisfies Assumption 1. Note that in such model,

each ranking receives probability at most 1
(m−K)! =

1
Ω(expm) .

1The algorithm is allowed to return “Failure” with probability at most 1

m
. However, when it returns YES or NO, the answer

must be correct. Our hardness results hold even for algorithms that are only required to succeed with probability o(1).
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We show that for models that satisfying Assumption 1, winner determination under the Dodgson rule

and the Young rule is hard unless NP=ZPP. Note that NP 6=ZPP is widely believed to hold in complexity

theory. The high-level idea is to combine the existence of a top-K concentration distribution guaranteed by

Assumption 1 and neutrality, to show that for any possible input of a NP-complete problem, the adversary

is able to construct a distribution of voting profile such that efficient semi-random winner determination

implies a coRP algorithm for the NP-complete problem. Thus NP⊆coRP and it implies NP=ZPP by the

following reasoning. Recall that RP ⊆ NP. Therefore, RP ⊆NP⊆ coRP, which means that RP = RP ∩ coRP.

Recall that RP ∩ coRP =ZPP. We have RP = ZPP, which means that coRP = coZPP. Since coZPP = ZPP,

it follows that NP⊆ coRP = coZPP =ZPP.

Theorem 1 (Semi-random hardness of DODGSONSCORE). For any serie of single-agent preference mod-

els ~M that satisfies Assumption 1, there exists no polynomial-time algorithm for SEMI-RANDOM-DODGSONSCORE

under ~M unless NP=ZPP.

Proof. Overview of the proof. We leverage the reduction in [5] that reduces the NP-complete problem EX-

ACT COVER BY 3-SETS (X3C) to DODGSONSCORE. An instance of X3C is denoted by (U,S) including

a q-element set U such that q is divisible by 3 and a collection S of 3-element subsets of U . We are asked to

decide whether S contains an exact cover for U , i.e., a subcollection S′ of S such that every element of U
occurs in exactly one member of S′.

Suppose that SEMI-RANDOM-DODGSONSCORE has a polynomial-time algorithm, denoted as Alg. We

will use Alg to construct a coRP algorithm for X3C. Formally, the proof proceeds in two steps. For any

instance of X3C, in Step 1, we follow the original reduction to construct a profile P1. Then we construct a

parameter profile PΘ using the semi-random model ~M based on P1. Note that a parameter profile corre-

sponds to distribution over profiles. In Step 2, we show that Alg can be leveraged to Algorithm 1 to prove

that X3C is in coRP, which implies NP= ZPP as shown above.

Let (U,S) be any instance of X3C such that U = {u1, u2, · · · , uq} and S = {S1, S2, · · · , Ss} is a

collection of s distinct 3-element subsets of U . We assume without loss of generality that q/3 ≤ s ≤ q3/6
because (U,S) must be a NO instance if s < q/3 and there are at most

(

q
3

)

≤ q3/6 distinct 3-element

subsets of U .

Step 1. Construct profile P1 and parameter profile PΘ. We first use the reduction by Bartholdi et al. [5]

to construct a voting profile P1 ∈ L(Am1
)n of polynomial-size in q. The proof of Lemma 1 can be found in

Appendix A.

Lemma 1. We can construct a profile P1 ∈ L(Am1
)n with m1 = 2q+s+1 = O(q3), n ≤ 2(q+1)s+1 =

O(q4), and an alternative c such that (P1, c,
4q
3 ) is a YES instance of DODGSONSCORE if and only if (U,S)

is a YES instance of X3C. The construction can be done in polynomial time in q.

The following observation of the Dodgson rule is crucial for the proof. We introduce one more notation

here. For any profile P ∈ L(Am)n, we denote AppLast(P,m′) the set of profiles obtained from P
by appending m′ extra alternatives to the bottom of each agent’s preferences in any order. It follows that

|AppLast(P,m′)| = (m′!)n.

Lemma 2. For any profile P1 ∈ L(Am)n, any integer m′ ≥ 1 and profile P2 ∈ AppLast(P1,m
′), the

following holds for any alternative a ∈ Am:
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• If a is Dodgson winner in P1, then a is also Dodgson winner in P2.

• The Dodgson score of a in P1 is equal to that in P2.

The proof of Lemma 2 follows by definition and can be found in Appendix B. Informally, Lemma 2

states that by appending alternatives at the bottom of each agent’s preference order, the winner and score

under the Dodgson rule are robust.

Let m = (2m1n)
d = poly(q), where d is the constant defined in Assumption 1. We create a set

of m − m1 dummy alternatives called D. The total alternative set is set as Am = Am1
∪ D. Denote

P1 = (R1
i )i∈[n]. We define P := AppLast(P1,m−m1) = (Ri)i∈[n] by appending the dummy alternatives

in D. We remark that by the definition of AppLast, each ranking Ri in P is of the form

Ri = Am1
≻Ri

D

where the order of Am1
in Ri is the same as R1

i .

Now we construct the parameter profile PΘ based on P such that each parameter corresponds to a

preference order in P . According to Assumption 1, there exists K = ⌈m
1

d ⌉ ≥ m1, A′ ⊆ Am, R′ ∈ L(A′),
and π ∈ Πm, such that |A′| = K and PrR∼π(TopK(R) = R′) ≥ 1− 1

K . Let

R∗ := A′ ≻R∗ (Am \ A′)

where the order in A′ is the same as R′ and the order in Am \ A′ is arbitrary. Denote the parameter

corresponding to this specific distribution π ∈ Πm as θ. For every i ∈ [n], we can find a permutation σi
over L(Am) such that σi(R

∗) = Ri. We then apply permutation σi to the predefined distribution π and get

a new distribution σi(π) which is also in Πm since Mm is neutral,. Now we define the parameter profile

PΘ := (θi)i∈[n], where θi is the parameter corresponding to σi(π). Since K ≥ m1, we have

Pr
R∼πθi

(Topm1
(R) = R1

i ) ≥ 1−
1

K

and the construction of PΘ can be done in polynomial time of q.

Step 2. Use Alg to solve X3C. For a profile P ∈ L(Am)n, we denote TopK(P ) the collection of top-K
ranking of each preference order in P . We now prove that we can construct a coRP Algorithm for X3C

based on Alg.

Claim 1. If Topm1
(P ′) = P1, then (P ′, c, 4q/3) is a YES instance for DODGSONSCORE if and only if

(U,S) is a YES instance for X3C.

Proof. We know that P ′ ∈ AppLast(P1,m − m1) by definition. According to Lemma 2, we know that

the Dodgson score of c in P ′ is the same as the Dodgson score of c in P1. Therefore, (P ′, c, 4q3 ) is a YES

instance of DODGSONSCORE if and only if (P1, c,
4q
3 ) is a YES instance of DODGSONSCORE, which is

also equivalent to (U,S) is a YES instance by lemma 1.

Notice that sampling P ′ from PΘ takes polynomial time because ~M is P-samplable (Assumption 1). It

follows that Algorithm 1 is a polynomial-time algorithm. Recall that A coRP algorithm always returns YES

to YES instances, and returns NO with constant probability to NO instances. Since Algorithm 1 returns NO

7



Algorithm 1 Randomized Algorithm for X3C

Input: An X3C instance (U,S) and Alg for DODGSONSCORE

1: Construct profile P1 and parameter profile PΘ according to Step 1.

2: Sample a profile P ′ from ~Mm given PΘ.

3: if Topm1
(P ′) 6= P1 then

4: Return YES.

5: end if

6: Run Alg on (P ′, c, 4q/3).
7: if Alg returns YES then

8: Return YES.

9: else

10: Return NO.

11: end if

only if Topm1
(P ′) = P1 and (P ′, c, 4q/3) is a NO instance, by claim 1 it is clear that if (U,S) is a YES

instance then Algorithm 1 returns YES. Therefore, to prove that Algorithm 1 is an coRP algorithm it suffices

to prove that if (U,S) is a NO instance then Algorithm 1 returns NO with constant probability.

Claim 2. Pr
(

Topm1
(P ′) = P1

)

≥ 1/2.

Proof. P ′ = (R′
i)i∈[n] is sampled from PΘ = (θi)i∈[n]. Recall that m = (2m1n)

d and K = m
1

d . Thus

K ≥ m1 and we know that by construction in Step 1 and Assumption 1 that for all i ∈ [n],

Pr
R′

i∼πθi

(

Topm1
(R′

i) = R1
i

)

≥ Pr
R′

i∼πθi

(

TopK(R′
i) = R1

i

)

≥ 1−
1

K
= 1−

1

2m1n
.

Thus we can derive

Pr
P ′∼PΘ

(

Topm1
(P ′) = P1

)

≥
n
∏

i=1

(

Pr
R′

i∼πθi

(

TopK(R′
i) = R1

i

)

)

≥ (1−
1

2m1n
)n ≥ 1−

1

2m1
≥

1

2
.

When (U,S) is a NO instance of X3C, Alg(P ′, c, 4q3 ) returns NO with probability at least 1 − 1
m by

definition 5. Note that Algorithm 1 returns YES when Topm1
(P ′) 6= P1 which happens with probability at

most 1
2 by Claim 2. Therefore, for any profile P ′ ∈ L(Am)n such that Topm1

(P ′) = P1}, Alg(P ′, c, 4q3 )
succeeds with probability at least 1 − 2

m ≥ 1
3 . According to Claim 1 and 2, we know that Algorithm 1

returns NO for any NO instance with probability at least 1
2 ×

1
3 = 1

6 . This completes the proof.

We prove a similar result for YOUNGSCORE and the proof can be found in Appendix C.

Theorem 2 (Semi-random hardness of YOUNGSCORE). For any single-agent preference model ~M that

satisfies Assumption 1, there exists no polynomial-time algorithm for SEMI-RANDOM-YOUNGSCORE under
~M unless NP=ZPP.
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Proof sketch. We first extend Lemma 2 for the Dodgson rule to the Young rule. With that in hand, the proof

is then very similar to that of Theorem 1. The main difference is now that we use the reduction in [16] to

construct the profile in Step 1 and then a coRP algorithm for the NP-complete problem X3C, which leads

to NP = ZPP.

3.1 Extension to Multi-Winner Voting Rules

A multi-winner voting rule selects a winning k-committee, which is a k-size subset of alternatives. We

consider the Chamberlin-Courant (CC) rule and the Monroe rule that assign each k-committee a score and

choose the k-committee with the highest (respectively, lowest) score as the winner. Definitions of the two

voting rules and their corresponding winner determination problems and the proof of the following theorem

can be found in Appendix D. We remark that winner determination under the CC rule and the Monroe rule

are both NP-hard [32, 27].

Theorem 3 (Semi-random hardness of CC and Monroe). For any single-agent preference model ~M that

satisfies Assumption 1, there exists no polynomial-time algorithm for the semi-random version of the winner

determination problems of the CC rule and the Monroe rule under ~M unless NP=ZPP.

Proof sketch. We first prove counter parts of Lemma 2 for the CC rule and the Monroe rule. Then the proof

follows the same idea in the proof of Theorem 1, except that we use different reductions to construct the

profile in Step 1.

4 KEMENYSCORE v.s. DODGSONSCORE

In this section, we present to two results regarding the Kemeny and Dodgson rule under the ~α-IC model.

In Theorem 4, we show that SEMI-RANDOM-KEMENYSCORE has no polynomial time algorithm under (1−
1
m)-IC unless NP = ZPP. In contrast, we provide an efficient algorithm for SEMI-RANDOM-DODGSONSCORE

under (1 − 1
m )-IC when n = Ω(m2 log2 m) (Theorem 5). The two results together provide an interesting

separation of the semi-random complexity of winner determination under different NP-hard rules.

4.1 Semi-Random Hardness of KEMENYSCORE

KEMENYSCORE is NP-complete and is easier than computing the Kemeny ranking, which is ΘP
2 -complete

[24]. Thus hardness result for computing the Kemeny ranking [41] does not imply the semi-random hardness

of KEMENYSCORE. Nevertheless, under the same assumption made in [41], we can prove the semi-random

hardness of KEMENYSCORE. To better illustrate the separation of semi-random complexity between Ke-

meny and Dodgson, we state the result in a special case under the ~α-IC model first. The formal statement of

the general assumption and theorem as well as its proof are defered to Section 4.3.

Theorem 4. For any constant d ≥ 0 and ~α = (αm)m≥3 such that αm ∈ [0, 1− 1
md ] for any sufficiently large

m, there exists no polynomial-time algorithm for SEMI-RANDOM-KEMENYSCORE under ~α-IC unless NP

= ZPP.

9



Note that for d ≥ 0, (1 − 1
md )-IC is close to the average case in the sense that any distribution in Πm

is only O( 1
md ) away from the uniform distribution in total variation distance. Therefore, Theorem 4 shows

that KEMENYSCORE remains hard even for models that are close to the average case.

4.2 Semi-Random Easiness of DODGSONSCORE

In contrast to the Kemeny rule, we prove that winner determination under the Dodgson rule is tractable under

models close to the average case, i.e., (1− 1
m)-IC. We remark here that although (1− 1

m)-IC is close to IC,

(1 − 1
m )-IC may concentrate on a single ranking with probability as large as Θ( 1

m), while every ranking in

IC has probability exactly 1
m! = o( 1

exp(m)).

Since 1-IC is equivalent to IC, the following theorem that works for any α ∈ [1− 1
m , 1] thus generalizes

previous results that only work for IC [28, 25].

Theorem 5 (Semi-random easiness of DODGSONSCORE). For any ~α = (αm)m≥3 such that αm ∈ [1 −
1
m , 1] for sufficiently large m, there exists a polynomial-time algorithm for SEMI-RANDOM-DODGSONSCORE

under ~α-IC that succeeds with probability at least 1− 2(m− 1) exp
(

− n
72m2

)

.

Proof. The algorithm runs the polynomial-time greedy algorithm, denoted as GREEDY in [25] as a sub-

routine. Given (P, a), the output of GREEDY(P, a) belongs to Z × (“definitely”, “maybe”) such that if

GREEDY(P, a) outputs (s, “definitely”), then s is the Dodgson score of a in P . Given DODGSONSCORE

instance (P, a, t), the algorithm runs GREEDY(P, a) first. Then if GREEDY(P, a) outputs (s, “definitely”),
the algorithm outputs YES or NO based on whether s ≤ t. Otherwise the algorithm declares failure. There-

fore, it suffices to prove that when P is generated from ~α-IC, GREEDY(P, a) outputs with “definitely” with

high probability.

The following lemma, a simple extension of [25, Theorem 4.1.1], gives a sufficient condition under

which GREEDY(P, a) outputs with “definitely”. We introduce some new notations here. For two distinct

alternatives a, b and voter i, by a ≺i b we mean voter i prefers b to a. By a⋖i b we mean that not only voter

i prefers b to a, but also there is no other alternative c such that voter i prefers b to c and prefers c to a i.e.,

a ≺i c ≺i b.

Lemma 3. Given P = (≺i)i∈[n]. For each alternative a ∈ Am, if for all b ∈ Am \ {a} there exists β > 0
such that |{i ∈ [n] : a ≺i b}| ≤

n
2 + β and |{i ∈ [n] : a ⋖i b}| ≥ β then GREEDY(P, a) outputs with

“definitely”.

We give a sketch of the proof for Lemma 3 here. Recall that the Dodgson score of an alternative a is

the smallest number of exchanges between adjacent alternatives that makes a a Condorcet winner. Now

consider alternative b 6= a such that a needs extra β votes to defeat b. If |{i ∈ [n] : a ⋖i b}| ≥ β, then a
defeats b after exactly β exchanges, which is also necessary. If this is the case for any alternative b 6= a, then

we can decide in polynomial time the Dodgson score of a with certainty.

Claim 3. For any profile P = (≻i)i∈[n] generated from αm-IC, alternatives a, b ∈ Am, and β = (34 −
1
2m ) n

m > 0, We have

• Pr
[

|{i ∈ [n]|a ≺i b}| >
n
2 + β

]

< exp
(

− n
72m2

)

;

• Pr [|{i ∈ [n]|a⋖i b}| < β] < exp
(

− n
72m2

)

.
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Proof. Due to the space limit, we only prove the first inequality and leave the proof of the second inequality

in Appendix E. We need the following technical lemma, which is a straightforward application of Hoeffd-

ing’s inequality for bounded random variables, hence we omit the proof.

Lemma 4. Let X1, · · · ,Xn be a sequence of mutually independent random variables. If there exist q, p ∈
[0, 1] such that q ≤ p and for each i ∈ {1, · · · , n},

Pr[Xi = 1− p] = q and Pr[Xi = −p] = 1− q,

then for all d > 0, we have Pr[
∑n

i=1 Xi > d] < e−2d2/n.

Fix any i ∈ [n]. Denote πi ∈ Πm the preference distribution of agent i. Since αm ≥ 1 − 1
m , we know

Prπi
[R] ≥ m−1

m·m! for any preference order R ∈ L(Am). Note that there are exactly m!
2 rankings in L(Am)

such that a is ranked above b. Therefore, we have

Pr[a ≺i b] = 1− Pr[b ≺i a] ≤ 1−
m!

2
·
m− 1

m ·m!
=

m+ 1

2m

For each i ∈ [n], define Xi as

Xi =

{

m−1
2m if a ≺i b

−m+1
2m otherwise

It follows that |{i ∈ [n]|a ≺i b}| >
n
2 + β only if

n
∑

i=1

Xi >
m− 1

2m

(n

2
+ β

)

−
m+ 1

2m

(n

2
− β

)

=

(

1

4
−

1

2m

)

n

m
≥

n

12m
(m ≥ 3)

Note that Pr[Xi =
m−1
2m ] = Pr[a ≺i b] ≤

m+1
2m . The claim follows by setting d = n

12m and p = m+1
2m in

Lemma 4.

Applying union bound for all m− 1 alternatives in Am − {a} to Claim 3, we have

Pr

[

∀b 6= a, |{i ∈ [n] : a ≺i b}| >
n

2
+ β or |{i ∈ [n] : a⋖i b}| < β

]

≤ 2(m− 1) exp
(

−
n

72m2

)

According to Lemma 3, with probability at least 1 − 2(m − 1) exp
(

− n
72m2

)

, GREEDY(P, a) outputs with

“definitely”. This completes the proof.

According to Theorem 5, we know that under (1 − 1
m )-IC, SEMI-RANDOM-DODGSONSCORE is in

P when n = Ω(m2 log2 m). By Theorem 4, SEMI-RANDOM-KEMENYSCORE has no polynomial time

algorithm under (1− 1
m )-IC unless NP = ZPP. The two results together provide an interesting separation of

the semi-random complexity of winner determination under different NP-hard rules.
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4.3 Proof of Theorem 4

We introduce some notations before the statement of assumption and the proof. For a profile P ∈ L(Am)n,

its weighted majority graph WMG(P) is a weighted directed graph, and its vertices are represented by Am.

For any pair of alternatives a, b ∈ Am, the weight on edge a → b is the number of agents that prefer a to

b minus the number of agents that prefer b to a. For a distribution π over rankings, we define its weighted

majority graph WMG(π) similarly: For any pair of alternatives a, b ∈ Am, the weight on edge a → b is the

probability that a ranking prefers a to b minus the probability that a ranking prefers b to a. For each 3-cycle

a → b → c → a, its weight is defined as the sum of the weights on its three edges a → b, b → c, and c → a.

Assumption 2 ([41]). ~M is P-samplable, neutral, and satisfies the following condition: there exist constants

k ≥ 0 and A > 0 such that for any m ≥ 3, there exist π3c ∈ Πm such that WMG(π3c) has a 3-cycle G3c

with weight at least A
mk

Assumption 2 is weaker than Assumption 1. That’s because in the distribution π guaranteed by Assump-

tion 1, the top-K ranking remains unchanged with probability at least 1− 1
K , which implies that the 3-cycle

formed by the top-3 alternatives has weight ≥ 1− 2
K with K = m

1

d for constant d. For αm ∈ [0, 1 − 1
md ],

the model αm-IC has a 3-cycle with weight at least O( 1
md ) and thus also satisfies Assumption 2. We prove

in Theorem 6 the smoothed hardness of Kemeny under Assumption 2 which implies Theorem 4.

Theorem 6 (Smoothed Hardness of Kemeny). For any single-agent preference model ~M that satis-

fies Assumption 2, there exists no polynomial-time algorithm for SEMI-RANDOM-KEMENYSCORE unless

NP=ZPP.

Proof. Suppose that SEMI-RANDOM-KEMENYSCORE has a polynomial-time algorithm, denoted as Alg.

We use it to construct a coRP algorithm for the NP-complete problem EULERIAN FEEDBACK ARC SET

(EFAS) [31], which implies NP = ZPP as discussed in the proof of Theorem 1. An instance of EFAS is

denoted by (G, t), where t ∈ N and G is a directed unweighted Eulerian graph, which means that there

exists a closed Eulerian walk that passes each edge exactly once. We are asked to decide whether G can be

made acyclic by removing no more than t edges.

Given a single-agent preference model, a (fractional) parameter profile PΘ ∈ Θn
m is a collection of

n > 0 parameters, where n may not be an integer. Note that PΘ naturally leads to a fractional preference

profile, where the weight on each ranking represents its total weighted “probability” under all parameters in

PΘ. We include an illustrating example of fractional parameter profile and fractional preference profile in

Appendix F.

Let (G = (V,E), t) be any EFAS instance, where |V | = m.

Claim 4 ([41]). We can construct a fractional preference profile PΘ
G in polynomial time in m such that there

exists a constant k

• |PΘ
G | = O(mk+2),

• PΘ
G consists of O(m5) types of parameters,

• WMG(PΘ
G ) = G.

12



Let K = 13 + 2k, which means that K > 12. We first define a parameter profile PΘ∗
G of n = Θ(mK)

parameters that is approximately mK

|PΘ
G
|

copies of PΘ
G up to O(m5) in L∞ error. Formally, let

PΘ∗
G =

⌊

PΘ
G ·

mK

|PΘ
G |

⌋

(1)

Let n = |PΘ∗
G |. Because the number of different types of parameters in PΘ∗

G is O(m5), we have n =

mK−O(m5), ‖WMG(PΘ∗
G )−WMG(PΘ

G · mK

|PΘ
G
|
)‖∞ = O(m5), and ‖WMG(PΘ∗

G )−G· mK

|PΘ
G
|
)‖∞ = O(m5).

Let f(G,R) denote the number of backward arcs of linear order R in a directed graph G. The following

useful claim calculates the KT distance between R and the parameter profile PΘ
G · mK

|PΘ
G
|
. The proof of Claim 5

can be found in Appendix G.

Claim 5. For any linear order R ∈ L(Am), the KT distance between R and the fractional parameter profile

PΘ
G · mK

|PΘ
G
|

is KT
(

PΘ
G · mK

|PΘ
G
|
, R
)

= M + mK

|PΘ
G
|
· f(G,R), where M = mK

2

(

(m
2

)

− |E|
|PΘ

G
|

)

.

Algorithm 2 Algorithm for EFAS.

Input: EFAS Instance (G, t), Alg

1: Compute a parameter profile PΘ∗
G according to (1).

2: Sample a profile P ′ from ~Mm given PΘ∗
G .

3: if ‖WMG(P ′)−Gn‖1 >
(m
2

)

·m
K+1

2 then

4: Return YES.

5: end if

6: Run Alg on
(

P ′,M + t · mK

|PΘ
G
|
+mk+10

)

.

7: if Alg returns NO then

8: Return NO.

9: else

10: Return YES.

11: end if

We now prove that Alg returns the correct answer to (G, t) with probability at least 1 − exp(−Ω(m)).

Let Gn = G · mK

|PΘ
G
|
. The following claim bounds the probability that WMG(P ′) is different from Gn by

more than Ω(m
K+1

2 ).

Claim 6 ([41]). Pr
[

‖WMG(P ′)−Gn‖1 >
(m
2

)

·m
K+1

2

]

< exp(−Ω(m)).

Claim 7. If ‖WMG(P ′) − Gn‖1 ≤
(m
2

)

· m
K+1

2 , then
(

P ′,M + t · mK

2|PΘ
G
|
+mk+10

)

is a YES instance of

KEMENYSCORE if and only if (G, t) is a YES instance of EFAS.

Proof. If (G, t) is a YES instance of EFAS, then there exists a linear order R such that there are at most t

backward arcs in G according to R. Considering R as a ranking over alternatives, we have KT
(

PΘ
G · mK

|PΘ
G
|
, R
)

≤
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M + t · mK

|PΘ
G
|
. By assumption we know |KT(P ′, R) − KT(PΘ

G ·
mK

|PΘ
G |

, R)| = O(m
K+5

2 ). Therefore, the

kemeny score of ranking R is at most

KT(P ′, R) ≤ KT

(

PΘ
G ·

mK

|PΘ
G |

, R

)

+O(m
K+5

2 ) < M + t ·
mK

|PΘ
G |

+mk+10,

which means
(

P ′,M + t · mK

|PΘ
G
|
+mk+10

)

is a YES instance.

If (G, t) is a NO instance of EFAS, then for any linear order R of |V |, there are at least t+ 1 backward

arcs in G according to R. We have for any R ∈ L(Am), KT
(

PΘ
G · mK

|PΘ
G
|
, R
)

≥ M+(t+1)· m
K

|PΘ
G
|
. Therefore,

for any R ∈ L(Am), we have

KT(P ′, R) ≥ KT

(

PΘ
G ·

mK

|PΘ
G |

, R

)

−O(m
K+5

2 )

≥ M + t ·
mK

|PΘ
G |

+
mK

|PΘ
G |

− O(m
K+5

2 )

= M + t ·
mK

|PΘ
G |

+Θ(mk+11)−O(mk+9)

> M + t ·
mK

|PΘ
G |

+mk+10,

which means
(

P ′,M + t · mK

|PΘ
G
|
+mk+10

)

is a NO instance of KEMENYSCORE.

Note that Algorithm 2 only returns NO in line 8, when ‖WMG(P ′) − Gn‖1 >
(m
2

)

· m
K+1

2 and Alg

returns NO. By Claim 7, we know that Algorithm 2 never returns NO for any YES instance of EFAS, or

equivalently, it always returns YES for YES instance. Since ‖WMG(P ′) − Gn‖1 ≤
(m
2

)

· m
K+1

2 holds

with probability at least 1 − exp(−Ω(m)) and Alg returns with probability at least 1 − 1
m , we know that

Algorithm 2 returns NO for NO instance of EFAS with at least constant probability. This proves that EFAS

is in coRP and completes the proof.

5 Conclusion

In this paper, we conduct semi-random complexity analysis of winner determination under various vot-

ing rules. We give the first semi-random complexity results for the Dodgson rule, the Young rule, the

Chamberlin-Courant rule, and the Monroe rule. We also prove a hardness result for the Kemeny rule and a

semi-random easiness result for the Dodgson rule, illustrating an interesting separation between the semi-

random complexity of winner determination under different NP-hard voting rules.

As for future direction, an ambitious goal is to develop a dichotomy theorem for the semi-random

complexity of winner determination: winner determination is efficient if and only if the semi-random model

satisfies certain conditions. The semi-random complexity of winner determination under models beyond

Assumption 1 is a natural and interesting problem. We also conjecture that under the average-case analysis,

YOUNGSCORE is easy to decide with high probability but KEMENYSCORE remains hard.
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A Proof of Lemma 1

We first present the construction of profile P1 and then we show why it satisfies the desired properties.

Construction of P1. We first construct the set of alternatives Am1
, which contains three type of alternatives.

Am1
contains a critical alternative c. For any i ∈ [q] and element ui ∈ U , Am1

contains two element

alternatives ai and bi. We denote by E = {ai, bi|i ∈ {1, · · · , q}} the set of element alternatives. For

any j ∈ [s] and subset Sj ∈ S, Am1
contains one subset alternative sj . We denote by H the set of

subset alternatives.

Now we construct the ranking profile P1, which consists of the following three sub-profiles.

1. Swing Rankings We create s rankings for each member of S. For each subset Sj = {uj1 , uj2 , uj3},

denote Ej = {aj1 , aj2 , aj3}. Let RSj
be any ranking of the form Ej ≻ sj ≻ c ≻ (E/ Ej) ∪

(H/ sj) where the order of alternatives in each part can be arbitrary. We set P1,1 be the profile

containing s swing rankings RSj
for all j ∈ [s]. It is easy to see |P1,1| = s.

The idea behind swing rankings P1,1 is the following. Note that switching the special alternative

c up 1 position in RSj
gains 0 vote for c against all element alternatives E; switching 2 times

gains 1 vote; switching 3 times get 2 votes; switching 4 times get 3 votes. Thus, among the swing

rankings P1,1, any additional votes for c over element alternatives in E require 4/3 switches per

vote on the average. Moreover, to achieve 4/3 switches per vote, c must be switched 4 times to

the very top in each switched ranking.

2. Equalizing Rankings. For i ∈ [q], let Ni = |{Sj ∈ S|ui ∈ Sj}| be the number of subsets in S
that contains ui. Let N∗ = max{N1, N2, · · · , Nq}. Let Rui

be any linear order of the form

ai ≻ bi ≻ c ≻ (E/ {ai, bi}) ∪ H , where the order of the alternatives after c can be arbitrary.

We set P1,2 to be the profile containing N∗ − Ni copies of Rui
for all i ∈ [q]. We also have

|P1,2| ≤
∑

i∈[q]N
∗ −Ni ≤ qN∗ ≤ qs.

By adding equalizing rankings in P1,2 to P1,1, each alternative ai gets equal score in the pairwise

competitions against c. Note that among equalizing rankings P1,2, additional votes for c over an

element alternative ai require at least 2 switches per vote on the average.

3. Incremental Rankings. Let RI be any ranking of the form a1 ≻ · · · ≻ aq ≻ b1 ≻ · · · ≻ bq ≻ c ≻
H where the order of the alternatives after c can be arbitrary. We set P1,3 the profile containing

NI copies of RI such that ai will defeat c by exactly 1 voter in P1,1 ∪P1,2∪P1,3 for any i ∈ [q].
It is easy to see that |P1,3| ≤ |P1,1|+ |P1,2|+ 1 ≤ s+ qs+ 1.

By adding incremental rankings P1,3 to P1,1 ∪ P1,2, alternative ai defeats c by exactly 1 vote

for all i ∈ [q]. Besides, additional votes for c over an element alternative ai among incremental

rankings P1,3 require at least 2 switches per vote in average.

We set P1 = P1,1 ∪ P1,2 ∪ P1,3. According to the construction, we know that |P1| ≤
∑3

i=1 |P1,i| ≤
2(q + 1)s + 1 = O(q4).

Reduction. Recall that each element alternative ai wins exactly 1 vote against the critical alternative c in

P1. Thus in order to make c the Condorcet winner, c must win against each ai. However, this requires

at least 4q/3 switches and is achievable only if i) all switches are among swing rankings, and ii)
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each switched swing ranking move c to the top of the preference by 4 switches. It is obvious from

the construction of swing rankings that any collection of swing rankings that can elect c by no more

than 4q/3 switches correspond to an exact 3-cover of (U,S). Thus (P1, c,
4q
3 ) is a YES instance of

DODGSONSCORE if and only if (U,S) is a YES instance of X3C.

It is clear that the construction can be done in polynomial time in q. This completes the proof.

B Proof of Lemma 2

Fix any profile P1 ∈ L(Am)n, any integer m′ ≥ 1 and profile P2 ∈ AppLast(P1,m
′). Recall that the

Dodgson score of alternative a in profile P is defined as the smallest number of sequential exchanges of

adjacent alternatives in rankings of P to make a the Condorcet winner. Therefore, the Dodgson score of a
does not depend on the order of alternatives that are less preferred than a in each agent’s preference. Thus

the Dodgson score of a in P1 is equal to the Dodgson score of a in P2 ∈ AppLast(P1,m
′). Besides, the

Dodgson score of alternative b ∈ Am+m′ \Am in P2 is strictly higher than that of a in P2 since every agent

prefers a to b. Thus if a is the Dodgson winner in P1, a is also the Dodgson winner in P2.

C Proof of Theorem 2

Note that we only need to provide the following analog results regarding the Young rule to make the proof

of the semi-random hardness of DODGSONSCORE (Theorem 1) also work for YOUNGSCORE.

Definition 7 (SEMI-RANDOM-YOUNGSCORE). Fix a series of single-agent preference models ~M. Given

alternative a ∈ Am, t ∈ N and a semi-random profile P drawn from Mm, we are asked to decide whether

the Young score of a is at least t, with probability at least 1− 1
m .

Lemma 5. For any profile P1 ∈ L(Am)n, any integer m′ ≥ 1 and profile P2 ∈ AppLast(P1,m
′), the

following holds for any alternative a ∈ Am:

• If a is Young winner in P1, then a is also Young winner in P2.

• The Young score of a in P1 is equal to that in P2.

Proof. Fix any profile P1 ∈ L(Am)n, any integer m′ ≥ 1 and profile P2 ∈ AppLast(P1,m
′). Recall that

the Young score of alternative a in profile P is defined as the size of the largest subset of P to make a the

Condorcet winner. Therefore, the Young score of a does not depend on the order of alternatives that are less

preferred than a in each agent’s preference. Thus the Young score of a in P1 is equal to the Young score of

a in P2 ∈ AppLast(P1,m
′). Besides, the Young score of alternative b ∈ Am+m′ \ Am in P2 is exactly n

where the Young score of a is at most n. Thus if a is the Young winner in P1, a is also the Young winner in

P2.

The following lemma directly follows from the reduction in [16] and we omit the proof.

Lemma 6. We can construct a profile P1 ∈ L(Am1
)n with m1 = poly(n) and n = poly(n), and an

alternative c such that (P1, c, 1) is a YES instance of YOUNGSCORE if and only if (U,S) is a YES instance

of X3C. The construction can be done in polynomial time in q.
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D Extension to Multi-Winner Voting Rules

D.1 The Chamberlin-Courant rule and the Monroe rule.

A positional scoring function (PSF) is a function αm : [m] → Z. A PSF αm is a decreasing positional

scoring function (DPSF) if for each i, j ∈ [m], if i < j then αm(i) > αm(j). Denote a family of DPSFs

(αm)m≥3, where αm is a DPSF on [m], such that αm+1(i) = αm(i) holds for all m ≥ 3 and i ∈ [m]2. For

each alternative a, denote posi(a) its position in agent i’s preference. Agent i’s satisfaction for a is given by

αm(posi(a)).
We now define the Chamberlin-Courant (CC) rule and the Monroe rule. Given a committee C , we call

the function ΦC : N → C an assignment function for C , where N is the set of agents. A Monroe assignment

function should satisfy another constraint that the number of agents that assigned to each alternative is

approximately equal: ⌊ |N |
|C| ⌋ ≤ |Φ−1

c (a)| ≤ ⌈ |N |
|C| ⌉ holds for each alternative a ∈ C . Given a DPSF α,

committee C ⊆ Am, and an (Monroe) assignment function ΦC , we use the following two functions to

aggregate individual satisfaction:

Iα
sum(ΦC) =

n
∑

i=1

αm(posi(ΦC(i))),

Iα
min(ΦC) = min

i∈[n]
αm(posi(ΦC(i))).

We use the first function, Iα
sum(ΦC) in the utilitarian framework. The score assigned to committee C in

the CC rule, denote as Utilitarian-ScoreαCC(C) is the maximum of Iα
sum(ΦC) over all assignment functions.

Similarly, the score assigned to committee C in the Monroe rule, denote as Utilitarian-ScoreαM(C) is the

maximum of Iα
sum(ΦC) over all Monroe assignment functions. In the egalitarian framework, we use the

second function in the definition of Egalitarian-ScoreαCC(C) and Egalitarian-ScoreαM(C).
The corresponding decision problems of the CC rule and the Monroe rule are defined below, where we

are asked to decide whether there exists a k-committee whose score is at least a given threshold. Note that

hardness of this problem implies hardness of finding the winners.

Definition 8 (Winner determination problems of the CC rule and the Monroe rule). Let α be any

family of DPSFs. We are given P ∈ L(Am)n, k ∈ [m], t ∈ Z. In α-CC-WINNER under the utilitarian

framework, we are asked whether there exists a k-committee C such that Utilitarian-ScoreαM(C) is at least

t. In α-CC-WINNER under the egalitarian framework, we are asked whether there exists a k-committee C
such that Egalitarian-ScoreαM(C) is at least t. The problem α-MONROE-WINNER is defined similarly.

A family of functions s = {skm,n : L(Am)n × Ak
m → Z, n, k ≥ 1,m ≥ max{3, k}} is called a score

function. For each preference profile P ∈ L(Am)n, a score-based voting rule rs assigns a score to each

k-committee according to skm,n, and chooses the winners to be the set of k-committees with the highest (or

the lowest score). called the (rs, P, k)-winners. Note that the CC rule and the Monroe rule defined above are

both score-based voting rules and their winner determination problems are of the following form: Given a

2Note that any family of PSFs would satisfy this constraint by consistently modifying the score on each position. This modifi-

cation does not affect the complexity of winner determination problems.
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voting profile P ∈ L(Am)n, a score function skm,n, and t ∈ Z, decide if there exists a k-committee C ⊆ Am

such that skm,n(C) is at least t. So we also use rs-WINNER to refer the winner determination problem under

the voting rule rs.

D.2 Proof of Theorem 3

Note that we only need to provide the following results to make the proof of the semi-random hardness of

DODGSONSCORE (Theorem 1) also work for the CC rule and the Monroe rule.

Lemma 7. Let rs be the CC rule or the Monroe rule. For any profile P1 ∈ L(Am)n, any integer m′ ≥ 1
and profile P2 ∈ AppLast(P1,m

′), the following holds for any k-committee C ⊆ Am:

• If C is rs winner in P1, then a is also rs winner in P2.

• The rs score of a in P1 is equal to that in P2.

Proof. We only prove for the CC rule and the utilitarian framework. The proof for other cases such as the

Monroe rule and the egalitarian framework is similar.

According to the definition of family of DPSF, we have αm(i) = αm+1(i) = · · · = αm+m′

(i). Since

the agent set does not change, the optimal assignment function ΦC is the same for P1 and P2. It follows that

skm,n(P1, C) =

n
∑

i=1

αm(posi(Φc(i)))

=
n
∑

i=1

αm+m′

(posi(Φc(i)))

= skm+m′,n(P2, C)

Since α is a family of DPSF, any alternative in Am+m′−Am has strictly lower score than any alternative

in Am1
for any agent. It follows that (rs, P1, k)-winner ⊆ (rs, P2, k)-winner. This completes the proof.

The following lemma follows by reductions in [32].

Lemma 8. Let rs be the CC rule or the Monroe rule. We can construct a profile P1 ∈ L(Am1
)n with

m1 = poly(n) and n = poly(n), k ∈ [m1], and t ∈ Z such that such that (P1, k, t) is a YES instance of

rs-WINNER if and only if (U,S) is a YES instance of X3C. The construction can be done in polynomial

time in q.

Note that reduction from any NP-complete problem works here and there is nothing special with X3C.

E Proof of Claim 3

Fix any i ∈ [n]. Denote πi ∈ Πm the preference distribution of agent i. Since αm ≥ 1 − 1
m , we know that

Prπi
[R] ≥ m−1

m·m! for any preference order R ∈ L(Am). Therefore

Pr[a⋖i b] ≥ (m− 1)! ·
m− 1

m ·m!
=

m− 1

m2
.
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For each i ∈ {1, · · · , n}, define

Xi =

{

m−1
m2 if a 6⋖ ib,
m−1
m2 − 1 otherwise.

Then |{i ∈ {1, · · · , n}|a⋖i b}| < β if and only if |{i ∈ {1, · · · , n}|a 6⋖ ib}| > n− β, which happens only

if

n
∑

i=1

Xi >
m− 1

m2
(n− β) +

(

m− 1

m2
− 1

)

β

=

(

1

4
−

1

2m

)

n

m

≥
n

12m
.

Note that Pr[Xi =
m−1
m2 ] = 1 − Pr[a ⋖ b] ≤ 1 − m−1

m2 . Setting d = n
12m and p = 1 − m−1

m2 in Lemma 4

yields the desired result.

F An Example of Fractional Parameter Profile and Fractional Preference

Profile

Let {a1, a2, a3} be three alternatives. For simplicity, we denote

R(i, j, k) := ai ≻ aj ≻ ak, ∀{i, j, k} = {1, 2, 3}

We define two parameters θ1 and θ2, each of which induced a distribution over L({a1, a2, a3}). The two

distribution πθ1 and πθ2 are defined as

Pr
r∼πθ1

[r = R(1, 2, 3)] = Pr
r∼πθ1

[r = R(1, 3, 2)] =
1

2

Pr
r∼πθ2

[r = R(1, 2, 3)] = Pr
r∼πθ2

[r = R(3, 2, 1)] =
1

2

A fractional parameter profile is collection of parameters with possibly non-integer weights. Similarly,

a fractional preference profile is collection of preference orders with possibly non-integer weights. For

example, (αθ1, βθ2) is a fractional parameter profile for any α, β ≥ 0 and its induced fractional preference

profile is

{
α+ β

2
R(1, 2, 3),

α

2
R(1, 3, 2),

β

2
R(3, 2, 1)}.

G Proof of Claim 5

Without loss of generality, we assume the linear order R is

R = a1 ≻ a2 ≻ · · · am−1 ≻ am.
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For any 1 ≤ i < j ≤ m, we have ai ≻ aj in R. Now we calculate the pairwise disagreement between

R and the parameter profile PΘ
G . Note that WMG(PΘ

G ) = G = (V,E) where G is an unweighted directed

graph. Fix 1 ≤ i < j ≤ m, the pairwise comparison between alternatives ai and aj lies in one of the three

cases below.

Case 1: There is no edge between ai and aj in G. In this case we know the weight on ai ≻ aj and the

weight on aj ≻ ai are equal to
|PΘ

G
|

2 .

Case 2: There is an edge ai → aj in G. In this case we know the weight on aj ≻ ai is
|PΘ

G
|−1
2 .

Case 3: There is an edge aj → ai in G. In this case we know the weight on aj ≻ ai is
|PΘ

G |+1
2 .

Since there are |E| arcs in G and f(G,R) backward arcs of R in G, we know there are
(m
2

)

− |E|
pairwise comparisons in Case 1, |E| − f(G,R) pairwise comparisons in Case 2, and f(G,R) pairwise

comparisons in Case 3. Summing the weights in all cases, we get

KT
(

PΘ
G , R

)

=
|PΘ

G |

2

((

m

2

)

− |E|

)

+
|PΘ

G | − 1

2
(|E| − f(G,R)) +

|PΘ
G |+ 1

2
f(G,R)

=
|PΘ

G |

2

(

m

2

)

−
|E|

2
+ f(G,R)

Therefore, we conclude by definition of M that

KT

(

PΘ
G ·

mK

|PΘ
G |

, R

)

=
mK

|PΘ
G |

· KT
(

PΘ
G , R

)

= M +
mK

|PΘ
G |

· f(G,R).
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