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Abstract

We study the question of last-iterate convergence rate of the extragradient
algorithm by [Kor76] and the optimistic gradient algorithm by [Pop80] in multi-
player games. We show that both algorithms with constant step-size have
last-iterate convergence rate of O( 1√

T
) to a Nash equilibrium in terms of

the gap function in smooth monotone games, where each player’s action
set is an arbitrary convex set. Previous results only study the unconstrained
setting, where each player’s action set is the entire Euclidean space. Our
results address an open question raised in several recent works [HIMM19,
GPD20, GPDO20], which ask for last-iterate convergence rate of either the
extragradient or the optimistic gradient algorithm in the constrained setting.
Our convergence rates for both algorithms are tight and match the lower
bounds by [GPD20, GPDO20]. At the core of our results lies a new notion
– the tangent residual, which we use to measure the proximity to a Nash
equilibrium. We use the tangent residual (or a modification of the tangent
residual) as the the potential function in our analysis of the extragradient
algorithm (or the optimistic gradient algorithm).

1 Introduction

We consider learning in monotone games, a class of multi-player games introduced by [Ros65]
that include many well studied games, e.g., two-player zero-sum games, convex-concave
games, λ-cocoercive games [LZMJ20], zero-sum polymatrix games [BF87, DP09, CD11], and
zero-sum socially-concave games [EDMN09]. We focus on the following question: Can we
obtain last-iterate convergence rate to a Nash equilibrium in monotone games when all players
act according to a simple learning algorithm?

We adopt the multi-player online learning model as introduced in [CBL06], where players
interact with each other repeatedly. At every time step t, every player i ∈ {1, . . . , N} chooses
an action z(i)t from her action set Z (i), which we assume to be a closed convex set in Rni . We

say the game is unconstrained if Z (i) = Rni for each player i. Player i’s loss function ℓ
(i)
t (·) is

determined based on the underlying game and the actions of the other players in round t.
Player i receives the loss ℓ(i)t (z(i)t ) as well as some additional feedback that informs her how
to improve her decisions in the future. In this paper, we assume that each player receives the
gradient feedback, i.e., player i receives the vector ∇ℓ

(i)
t (z(i)t ). We make an additional mild

assumption that the game is smooth, i.e., all players’ gradients are Lipschitz. Smoothness is
a natural assumption that is satisfied in most applications and is also made in the majority
of works concerning monotone games.
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Game class Setting Step size Convergence rate

Strongly monotone general constant O(c−T) (see e.g., [Tse95]
[LS19, MOP19, ZMM+21])

Cocoercive unconstrained constant O( 1√
T
) [LZMJ20]

Monotone

general constant Asymptotic [Pop80, HIMM19]

general decreasing Asymptotic ∗ (see e.g., [ZMM+17]
[ZMA+18, MZ19, HAM21])

unconstrained constant O( 1√
T
)† [GPD20]

general constant O( 1√
T
) [This paper]

Table 1: Last-iterate convergence for no-regret learning in smooth monotone games with
perfect gradient feedback. (*) The results hold for variationally stable games. (†) The result
holds under an additional second-order smoothness assumption.

The standard metric to quantify an online learning algorithm’s performance is the regret.
Formally, the regret of player i is defined as the difference between ∑T

t=1 ℓ
(i)
t (z(i)t ), player

i’s cumulative loss, and minz∈Z (i) ∑T
t=1 ℓ

(i)
t (z), the loss incurred by the best fixed action in

hindsight. An online learning algorithm is no-regret if, even under an adversarially chosen
loss sequence {ℓ(i)t (·)}t∈[T], its regret at the end of round T is sublinear in T.

A vast literature on learning in games discusses the convergence to a Nash equilibrium using
no-regret learning algorithms. However, most of the results concern only the time-average
convergence, i.e., the convergence of the time average of the joint action profile, rather
than the last-iterate convergence, i.e., the convergence of the joint action profile. From a
game-theoretic perspective, the last-iterate convergence is more appealing compared to
the time-average convergence, as only the last-iterate convergence provides a description
of the evolution of the overall behavior of the players. In contrast, the trajectory of the
players’ joint action may be cycling around in the space perpetually while still converges
in the time-average sense as demonstrated by [MPP18]. Recently, a line of work is de-
voted to obtain last-iterate convergence in smooth monotone games [ZMB+17, ZMM+17,
ZMA+18, DP18, MOP19, HIMM19, LNPW20, GPD20, LZMJ20, ZMM+21]. However, un-
less the game is strongly monotone or unconstrained, only asymptotic convergence is
known. Moreover, many of these results crucially rely on decreasing step-size, which, as
pointed out by [LZMJ20], is unnatural from an economic point of view, because it treats
newly acquired information with decreasing importance. Hence, the following question is
of particular interest and is raised as an open question in [HIMM19, LZMJ20, GPD20].

Can we establish last-iterate rates if all players of a constrained smooth monotone game (*)
act according to a no-regret learning algorithm with constant step size?

[LZMJ20] first realizes the importance of question (*) and takes initial steps towards ad-
dressing it. They show that if all players follow the gradient descent algorithm with constant
step size, then for all smooth λ-cocoercive games, the joint action (z(1)t , . . . , z(N)

t ) has last-
iterate convergence rate of O( 1√

T
) to a Nash equilibrium in terms of the gap function. For

smooth strongly monotone games, a subclass of λ-cocoercive games, linear last-iterate con-
vergence rates are known [Tse95, Mal15, LS19, MOP19, ZMM+21]. Despite the generality
of λ-cocoercive games, several fundamental classes of games such as two-player zero-sum
games, zero-sum polymatrix games [BF87, DGP09, CD11] and its generalization zero-sum
socially-concave games [EDMN09] are monotone but not λ-cocoercive. [GPD20] extends
the result to smooth monotone games with an O( 1√

T
) last-iterate convergence rate using a

different algorithm – the optimistic gradient by [Pop80] under an additional second-order
smoothness assumption. Note that gradient descent has been observed to fail to converge
in even two-player zero-sum games (see e.g., [DISZ17]), so a different algorithm is indeed
needed. However, the results by [LZMJ20] and [GPD20] only consider unconstrained games,
while in most game-theoretic settings, the players’ actions are constrained. For example, in
finite games, a player is restricted to choose a distribution over her finite set of actions. We
summarize the results for last-iterate convergence in monotone games in Table 1.

2



Our Contributions. Our first contribution is to provide an affirmative answer to question (*).

Contribution 1: In Theorem 3, we show that if all players of a constrained smooth
monotone game act according to the optimistic gradient algorithm, which is no-regret,
with a constant step size, then their joint action exhibits a last-iterate convergence rate
of O

(
1√
T

)
in terms of the gap function (Definition 2) to a Nash equilibrium.

Our result holds in the constrained setting and does not rely on the second-order
smoothness assumption made in [GPD20]. Moreover, our upper bound is tight and matches
the lower bound of [GPD20].

The problem of finding a Nash equilibrium in a smooth monotone game is essentially
equivalent to solving a Lipschitz and monotone variational inequality (VI) (Definition 5
in Appendix D),1 which has been studied since the 1960s [HS66, Bro65, LS67, BS68, Sib70].
There is a vast literature on solving VIs, and we refer the reader to [? ] for further references.
The extragradient (EG) algorithm by [Kor76] and the optimistic gradient (OG) algorithm
by [Pop80] are arguably the two most classical and popular methods for solving monotone
VIs. Despite the long history, the last-iterates of both algorithms are only known to asymp-
totically converge to a solution of the monotone and Lipschitz VI,2 but no upper bounds on
the rate of convergence had been provided for the general setting.

Contribution 2: We provide the first and tight last-iterate convergence rate of O( 1√
T
)

in terms of the gap function for both EG and OG with constant step size for solving
Lipschitz and monotone VIs (Theorem 9 and Theorem 10 in Appendix I).

Our analysis of OG for monotone games directly applies to monotone VIs. To be more
consistent with our discussion of OG, we state our last-iterate convergence rate of EG
in the context of online learning in monotone games (Theorem 3).3 Prior to our work,
last-iterate convergence rate of EG only exists in the unconstrained setting. [GPDO20]
shows a O( 1√

T
) upper bound in terms of the gap function under an additional second-order

smoothness condition. [GLG21] improves the result and shows that the same upper bound
holds without the second-order smoothness condition but still requires the setting to be
unconstrained.

Our Analysis. As mentioned in [GPD20], “The lack of existence of a natural potential
function in general monotone games is a significant challenge in establishing last-iterate
convergence.” Indeed, many of the natural quantities such as the gap function, the norm of
the gradient, the difference of two consecutive iterates are provably non-monotone even in
bilinear games. See Appendix J for more discussion and examples. We propose a notion that
(i) measures the proximity to a Nash equilibrium, and (ii) can be used to construct natural
potential functions to analyze both EG and OG in monotone games. We call the new notion
the tangent residual, which can be viewed as the norm of the gradient projected to the
tangent cone of the current iterate (Definition 4). The tangent residual plays a crucial role in
our analyses for both algorithms. Unlike the other quantities mentioned above, we show that
the tangent residual is monotonically decreasing and has a last-iterate convergence rate of O( 1√

T
)

for EG. For OG, we prove that a small modification of the tangent residual is monotonically
decreasing, which implies that the tangent residual has a last-iterate convergence rate of
O( 1√

T
). Using the convergence rate of the tangent residual, we can easily derive the last-

iterate convergence rate of other classical performance measures such as the gap function
and the total gap function. However, we suspect these rates can be challenging to obtain
directly without the help of a potential function. Finally, we establish the monotonicity
of our potential functions using computer-aided proofs based on sum-of-squares (SOS)

1Technically, the definition of Lipschitz and monotone VI captures finding a Nash equilibrium in a
smooth monotone game as a special case, but the difference has little impact on our analyses, and our
results hold for Lipschitz and monotone VIs.

2The last-iterate asymptotic convergence of EG can be found in [Kor76] and [? ], and the last-iterate
asymptotic convergence of OG can be found in [Pop80] and [HIMM19].

3Although EG is not a no-regret learning algorithm (see Proposition 10 in [GPD20]), it is neverthe-
less a simple and natural learning algorithm.
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programming [Nes00, Par00, Par03, Las01, Lau09]. Indeed, our potential function of OG is
directly constructed using SOS programming. Additionally, our computer-aided proofs can
be easily verified by humans. We think the tangent residual and the SOS-based analysis
might be of independent interest. See Section 4.2, Appendix B, and Appendix C for more
discussion.

1.1 Related Work

Last-Iterate Convergence Rate for EG/OG like Algorithms. [GPDO20, GPD20] show a
lower bound of Ω( 1√

T
) for solving bilinear games using any p-SCLI algorithms, which

include EG and OG. In the unconstrained setting, if we further assume that either the game
is strongly monotone or the payoff matrix A in a bilinear game has all singular values
bounded away from 0, linear convergence rate is known for EG, OG, and several of their
variants [DISZ17, GBV+18, LS19, MOP19, PDZC20, ZY19]. The results for the constrained
setting are sparser. Unless the game is strongly monotone, most results only guarantee
asymptotic convergence, i.e., converge in the limit, [DP18, LNPW20]. Finally, a recent
paper by [WLZL21b] provides a linear convergence rate of OG for bilinear games when
the domain is a polytope. They show that there is a problem dependent constant 0 < c < 1
that depends on the payoff matrix of the game as well as the constraint set, so that the error
shrinks by a 1 − c factor per iteration. However, c may be arbitrarily close to 0, even if we
assume the corresponding operator to be L-Lipschitz. Overall, their “problem-dependent”
bound is incomparable and complements the worst-case view taken in this paper, where
we want to derive the worst-case convergence rate for all smooth and monotone games.
Our results are the first last-iterate convergence rates in this worst-case view and match
the lower bounds by [GPDO20, GPD20].

Other Algorithms and Performance Measures. It is well-known that both EG [Nem04]
and OG [HIMM19, MOP20] have a time-average convergence rate of O( 1

T ) in terms of
the gap function for smooth monotone games. Other than the gap function, one can also
measure the convergence using the norm of the operator if the setting is unconstrained,
or the natural residual (Definition 7 in Appendix E) or similar notions if the setting is
constrained. In the unconstrained setting, [Kim21], [YR21], and [LK21] provide algorithms
that obtain O( 1

T ) convergence rate in terms of the norm of the operator, which is shown to
be optimal by [YR21] for Lipschitz and monotone VIs. In the constrained setting, [Dia20]
shows the same O( 1

T ) convergence rate under the extra assumption that the operator is
cocoercive and loses an additional logarithmic factor when the operator is only monotone.
Our result implies a O( 1√

T
) last-iterate convergence rate in terms of the natural residual or

the gap function for both EG and OG. A main motivation of this paper is game-theoretic,
that is, we would like to view natural learning algorithms as models of agents’ behavior in
online learning and understand the speed for the overall behavior to converge to a Nash
equilibrium. Although some of the results above are natural for games, they either only
hold in the unconstrained setting or do not converge in the last-iterate sense. From this
game-theoretic view point, we believe understanding the last-iterate convergence rate of
these natural learning algorithms is an important problem.

2 Preliminaries

We consider the Euclidean Space (Rn, ∥ · ∥), where ∥ · ∥ is the ℓ2 norm and ⟨·, ·⟩ denotes
inner product on Rn. A continuous game G is denoted as (N , {Z (i)}i∈[N], { f (i)}i∈[N]) where
there are N players N = {1, · · · , N}. Player i ∈ N chooses action from a closed convex
set Z (i) ⊆ Rni such that ZG := Πi∈NZ (i) ⊆ Rn and wants to minimize her cost function
f (i) : ZG → R. For each player i, we denote by z(−i) the vector of actions of all the other
players and by z(i) the action of player i. When players play according to action profile
z ∈ ZG , player i receives gradient feedback ∇z(i) f (i)(z(1), . . . , z(N)). A Nash equilibrium of
game G is an action profile z∗ ∈ ZG such that f (i)(z∗) ≤ f (i)(z′(i), z∗(−i)) for any z′(i) ∈ Z (i).
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Let FG(·) = (∇z(1) f (1)(·), · · · ,∇z(N) f (N)(·)) be an operator that maps any joint action in Z
to the corresponding joint gradient feedback vector in Rn. When G is clear from context, we
omit the subscript and write FG(z) (ZG resp.) as F(z) (Z resp.).

Nash Equilibria of Monotone Games. Throughout this paper, we focus on smooth
monotone games (Definition 1). It is well known that finding a Nash equilibrium of a
monotone game is exactly the same as finding a solution to the variational inequality with
monotone operator FG (Lemma 1).

Definition 1 ([Ros65]). We say game G is L-smooth and monotone if the operator FG is L-
Lipschitz (i.e., ∀z, z′ ∈ Z , L · ∥z − z′∥ ≥ ∥FG(z)− FG(z′)∥) and monotone (i.e., ∀z, z′ ∈ Z ,
⟨FG(z)− FG(z′), z − z′⟩ ≥ 0).

Remark 1 (Monotone and Concave Games). For any monotone game
G = (N , {Z (i)}i∈N , { f (i)}i∈[N]), the monotonicity condition implies that for any fixed
z(−i), player i’s cost function is convex in z(i). Thus, all monotone games are concave games.
However, the converse is not true as illustrated in the following example.

Consider a two player game G where player 1 (or player 2) chooses action x ∈ R (or y ∈ R), and
their cost functions are f (1)(x, y) = f (2)(x, y) = x · y. Clearly, f (1)(x, y) (or f (2)(x, y)) is convex
in x (or y) if we fix y (or x). It is not hard to see that FG(x, y) = (y, x) for any x, y ∈ R. Therefore,
the game is not monotone as ⟨FG(x, y)− FG(y, x), (x, y)− (y, x)⟩ = −2(x − y)2 < 0 for any
x ̸= y.

Lemma 1 (1.4.2 Proposition [? ] ). For a monotone game G, an action profile z∗ is a Nash
equilibrium if and only if ⟨FG(z∗), z∗ − z⟩ ≤ 0, ∀z ∈ Z .

Remark 2. One sufficient condition for a Nash equilibrium z∗ to exist is when the set Z is bounded,
but there are also other sufficient conditions that apply to unbounded Z . See [? ] for more details.
Throughout this paper, we only consider monotone games that have a Nash equilibrium.

Definition 2 (Gap and Total Gap Function). For a monotone game G, two stan-
dard ways to measure the proximity of an action profile z ∈ Z to Nash equilib-
rium, are by its gap function and total gap function. Let D be a fixed parame-
ter. The gap function is defined as GAPG,D(z) = maxz′∈Z∩B(z,D) ⟨FG(z), z − z′⟩, where
B(z, D) is a ball with radius D centered at z.4 The total gap function is defined as
TGAPG,D(z) = ∑i∈N ( f (i)(z)− minz′(i)∈Z (i)∩B(z(i),D) f (i)(z′(i), z(−i))).

When G and D are clear from context, we omit subscripts and write the gap function (total gap
function resp.) at z as GAP(z) (TGAP(z) resp.).

Remark 3. The total gap function is the sum of the suboptimality gaps, i.e., a player i’s suboptimality
gap is her cost under z minus her cost after best responding to z(−i) within B(z(i), D). As the
suboptimality gap is nonnegative for every player, a small total gap implies that no player can deviate
from their current action to significantly improve their cost, and the action profile is close to a Nash
equilibrium. Thus the total gap is 0 if and only if players are at a Nash Equilibrium.

In Lemma 2, we show that the gap function with radius D is an upper bound of the total gap with
radius D√

N
, where N is the number of players, so if an action profile has small gap function, then

again no player can deviate to significantly reduce their cost. A corollary of Lemma 1, is that the gap
function is 0 if and only if players are at a Nash Equilibrium.

The Optimistic Gradient Algorithm. Let wk be the action profile played at day k and
assume that player i updates her action according to the OG algorithm. For arbitrary z(i)0

and w(i)
0 , player’s i action at day k+ 1 is w(i)

k+1 such that z(i)k = ΠZ (i)

[
z(i)k−1 − η∇z(i) f (i)(w(i)

k )
]

and w(i)
k+1 = ΠZ (i)

[
z(i)k − η∇z(i) f (i)(w(i)

k )
]
.

4When Z is bounded, we choose D to be the diameter of Z . When Z is unbounded, the standard
choice is to choose D so that all the iterates of the algorithms are guaranteed to maintain in the ball
B(z, D). See Appendix D for more details.
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Note that action z(i)k is not being played by player i and is only used to compute action

w(i)
k+1. When all the players update their actions according to OG with step-size η, let

w0 = (w(1)
0 , . . . , w(N)

0 ) and z0 = (z(1)0 , . . . , z(N)
0 ). Then at day k + 1, players pick action

profile wk+1, where:

zk = ΠZ [zk−1 − ηF(wk)] , wk+1 = ΠZ [zk − ηF(wk)] (1)

Clearly, the OG update rule is well defined for any operator F and any closed convex set Z ,
and this is how the OG algorithm is defined for variational inequalities.

The Extragradient Algorithm. Let zk be the action profile played at day 2k and assume
that all players update their actions according to EG with step-size η. Then players play
according to action profile zk+ 1

2
at day 2k + 1 and action profile zk+1 at day 2k + 2, where:

zk+ 1
2
= ΠZ [zk − ηF(zk)] , zk+1 = ΠZ

[
zk − ηF(zk+ 1

2
)
]

(2)

Similarly, the EG update rule is well defined for any operator F and any closed convex set
Z . For the rest of the paper, we only consider the case where all players use the OG (or EG)
algorithm with constant step-size η. We omit superscripts that denote players’ identity and
use Expression (1) (or Expression (2)) for the update rule when players use OG (or EG).

3 The Tangent Residual and Its Properties

We formally introduce our key performance measure, the tangent residual . We define the
tangent residual over operators rather than games, as it will be easier to provide intuition
behind its formulation.
Definition 3 (Unit Normal Cone). Given a closed convex set Z ⊆ Rn and a point z ∈ Z , we
denote by NZ (z) = ⟨v ∈ Rn : ⟨v, z′ − z⟩ ≤ 0, ∀z′ ∈ Z⟩ the normal cone of Z at point z and by
N̂Z (z) = {v ∈ NZ (z) : ∥v∥ ≤ 1} the intersection of the unit ball with the the normal cone of Z at
z. Note that N̂Z (z) is nonempty and compact for any z ∈ Z , as (0, . . . , 0) ∈ N̂Z (z).
Definition 4 (Tangent Residual). Given an operator F : Z → Rn and a closed convex set Z , let
TZ (z) := {z′ ∈ Rn : ⟨z′, a⟩ ≤ 0, ∀a ∈ NZ (z)} be the tangent cone of z,5 and define JZ (z) :=
{z}+ TZ (z). The tangent residual of F at z ∈ Z is defined as rtan

(F,Z)
(z) := ∥ΠJZ (z)[z − F(z)]− z∥.

An equivalent definition is rtan
(F,Z)

(z) :=
√
∥F(z)∥2 − max a∈N̂Z (z),

⟨F(z),a⟩≤0

⟨a, F(z)⟩2.

Remark 4. We show the equivalence of the two definitions of tangent residual in Lemma 5 in
Appendix D. We may use either of them depending on which one is more convenient.

When the convex set Z and the operator F are clear from context, we are going to omit the
subscript and denote the unit normal cone as N̂(z) = N̂Z (z) and the tangent residual as
rtan(z) = rtan

(F,Z)
(z). Although the definition is slightly technical, one can think of the tangent

residual as the norm of another operator F̂, which is F projected to all directions that are not
“blocked” by the boundary of Z if one takes an infinitesimally small step ϵ · F(z), which is
the same as projecting F to JZ (z). Intuitively, if the tangent residual is small, then the next
iterate will not be far away from the current one.

Tangent Residual and Its Connection with Games. Given a monotone game G, we denote
by rtan

G (z) = rtan
(FG ,Z)

(z). In the next lemma, we argue that a small tangent residual implies a

5Interested readers can find a thorough introduction of the tangent cone and its definition for
general feasible sets in Chapter 6.A of [RW09]. When the feasible set is convex, Theorem 6.9 of [RW09]
provides a more succinct definition of the tangent cone and normal cone. When the feasible set is a
closed convex set, Corollary 6.30 of [RW09] further states that the tangent cone is the polar cone of the
normal cone. As we consider closed convex sets in our paper, we choose to define the tangent cone
for closed and convex sets directly as the polar cone of the normal cone, as it is the most convenient
definition for us.
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small gap and total gap, hence it suffices to show that the last-iterate has a small tangent
residual. The proof is postponed to Appendix E.

Lemma 2. [Adapted from Theorem 10 in [GPDO20] and Proposition 2 in [GPD20]] Let G =

(N , {Z (i)}i∈N , { f (i)}i∈[N]) be a monotone game where {Z (i)}i∈N are closed convex sets. For
z ∈ Z , we have GAPG,D(z) ≤ D · rtan

G (z) and TGAPG,D(z) ≤ GAPG,
√

ND(z) ≤
√

ND · rtan
G (z).

4 Last-Iterate Convergence Rate for EG and OG

We prove the last-iterate convergence rate for EG and OG. We first describe our proof plan.

Proof Plan. Our analyses for both algorithms follow the same three-step procedure: (i)
define a potential function that measures the proximity to a Nash equilibrium of the current
iterate; (ii) prove a best-iterate convergence rate, that is, show that in T steps, there exists
one iterate whose potential function is small; (iii) show that the potential function is non-
increasing, so the last-iterate is the best-iterate, and the best-iterate convergence rate becomes
the last-iterate convergence rate.

The first major challenge we face is to choose the appropriate potential functions. In the
unconstrained case, the central quantity is the norm of the operator FG . The key component
of the analyses [LZMJ20, GPDO20, GPD20, GLG21] is to establish that the norm of the
operator FG at the last iterate (also the T-th iterate) is upper bounded by O( 1√

T
), which

implies a O( 1√
T
) last-iterate convergence rate for the gap function. In the constrained setting,

the norm of the operator is a poor choice to measure the proximity to a Nash equilibrium,
as it can be far away from 0 even at a Nash equilibrium.

Potential function for EG. We use the tangent residual as the potential function for EG.
Our starting point is to find a suitable generalization for the norm of the operator in the
constrained setting. A standard generalization is the natural residual (Definition 7 in
Appendix E), which takes the constraints into account and is guaranteed to converge to 0 at
the Nash equilibrium. Unfortunately, we observe that the natural residual is not monotonically
decreasing even in basic bilinear games, making it difficult to directly analyze. Similar non-
monotonicity has been observed for several other natural performance measures such as
∥zk − zk+1/2∥,6 ∥zk − zk+1∥, maxz∈Z ⟨F(z), zk − z⟩ and maxz∈Z ⟨F(zk), zk − z⟩, leaving all
these quantities unsuitable as a potential function. See more discussion in Appendix J.
Indeed, tangent residual is the only natural generalization of the norm of the operator that
is always monotone in our numerical experiments.

Potential function for OG. We choose the potential function Φ(zk, wk) =

∥F(zk)− F(wk)∥2 + rtan(zk)
2 in our analysis for OG. The potential function can be

interpreted as the squared tangent residual rtan(zk)
2 and an extra correction term

∥F(zk)− F(wk)∥2. The potential function is discovered via SOS programming, with more
details in Section 4.2.

4.1 Best-Iterate Convergence

En route to establish the last-iterate convergence of EG and OG, we first show a weaker
guarantee known as the best-iterate convergence. In Lemma 3 we show that when all the
players use EG for 2 · T steps (OG for T steps), then there exists t∗ ∈ [T] where rtan(zt∗+1) ≤
O( 1√

T
) (Φ(zt∗ , wt∗) ≤ O( 1

T ) resp.). The proof for EG builds upon the proof for the best-
iterate w.r.t. ∥zk − zk+ 1

2
∥ by [Kor76? ], while the proof for OG builds upon the best-iterate

proof for ∥zk − wk+1∥ by [WLZL21a, HIMM19]. The proof of Lemma 3 is in Appendix F.

Lemma 3. Let G = (N , {Z (i)}i∈N , { f (i)}i∈[N]) be an L-smooth and monotone game where
{Z (i)}i∈N are closed convex sets and let z∗ be a Nash Equilibrium of G. Assume that all the players

6∥zk − zk+1/2∥ is proportional to the norm of the operator mapping introduced in [Dia20].
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update their actions using the EG algorithm with arbitrary starting action profile z0 and step-size
η ∈ (0, 1

L ). Then for and any T > 0, there exists t∗ ∈ [T] such that:

rtan(zt∗+1) ≤
1 + ηL + (ηL)2

η

1√
T

∥z0 − z∗∥√
1 − (ηL)2

.

Assume that all the players update their actions using the OG algorithm with arbitrary starting
action profiles z0,w0 and step-size η ∈ (0, 1

2L ). Then for and any T > 0, there exists t∗ ∈ [T] such
that:

Φ(zt∗ , wt∗) ≤
1

η2 · T

(
4 + 6η4L4

1 − 4η2L2 ∥z0 − z∗∥2 +
16η2L2 + 6η4L4

1 − 4η2L2 ∥w0 − z0∥2
)

.

4.2 Monotonicity of the Potentials

In this section, we prove that rtan(zk) (Φ(zk, wk) resp.) is non-increasing across iterates of
EG (OG resp.), which, in combination with Lemma 3, implies the last-iterate convergence
rate of smooth monotone games when all players update their actions using EG (OG resp.).

SOS Programming. Suppose we want to prove that a polynomial g(x) ∈ R[x] is non-
negative over a semialgebraic set S = {x : gi(x) ≤ 0, ∀i ∈ [M], hi(x) = 0, ∀i ∈ [N]},
where each gi(x) (hi(x) resp.) is also a polynomial. One way is to construct a certificate of
non-negativity, by providing a set of nonnegative coefficients {pi ≥ 0}i∈[M] and {qi}i∈[N]

such that g(x) + ∑i∈[M] pi · gi(x) + ∑i∈[N] qi · hi(x) is a SOS polynomial. Surprisingly, if g(x)
is indeed non-negative over S , a certificate of non-negativity always exists as guaranteed
by a foundational result in real algebraic geometry – the Krivine-Stengle Positivestellen-
satz [Kri64, Ste74], a generalization of Artin’s resolution of Hilbert’s 17th problem [Art27].
The SOS programming [Nes00, Par00, Par03, Las01, Lau09] is a systematic way to search
for such a certificate using semidefinite programming. See Appendix B for details.

Our approach is to apply SOS programming to search for a certificate of non-negativity for
rtan(zk)

2 − rtan(zk+1)
2 and Φ(zk, wk)− Φ(zk+1, wk+1) for every k, over a semialgebraic set

defined by the update rule of the corresponding algorithm and set of constraints Z .

Two important challenges with this approach is that the number of variables depends on
the dimension of Z and there are infinitely many constraints associated with the problem
(e.g. the set {⟨F(z)− F(z′), z − z′⟩ ≥ 0, ∀z, z′ ∈ Z}). We provide a detailed exposition for
the reduction of the number of constraints and the efficient formulation into a SOS program
in Appendix G.3, where we prove the monotonicity of our potential function for EG in both
the unconstrained and constrained settings.

Searching for the potential functions. The potential function of our
analysis of OG is directly discovered using an SOS program. The
program is formulated by searching over linear combinations of
||F(zk)||2 − ||F(zk+1)||2,||F(wk)||2 − ||F(wk+1)||2,⟨F(zk), F(wk)⟩ − ⟨F(zk+1), F(wk+1)⟩ and
rtan(zk)

2 − rtan(zk+1)
2, under (i) the constraint that the linear combination is non-

increasing,7 and (ii) the constraints induced by properties of the operator F(·), the
update rule of OG and the set Z (See Appendix G.3 for a demonstration of the induced
semialgebraic set of EG algorithm).

Our basis functions are chosen in a way so that we can search over all candidate potential
functions that are a linear combination of (i) rtan(zk)

2 and (ii) any squared norms of a linear
combination of F(zk), F(wk). Observe that the difference between two consecutive iterates
of any of the above functions can be expressed as a linear combination of the basis functions
we chose.

We then use the linear combination output by the SOS program as the potential function
in our analysis. We believe our heuristic for finding a potential function could be useful in

7To avoid finding the trivial linear combination, i.e., all coefficients equal to 0, we also use the
objective function in the SOS program to encourage a non-trivial solution if one exists by, for example,
maximizing the sum of the coefficients of the linear combination.

8



other settings. In general, one can first choose a collection of basis functions that may be part
of a potential function, then use SOS programming to search over all linear combinations of
the basis functions subject to the constraint that the linear combination is non-negative to
discover the potential function.

Initially, our candidate potential functions included the squared tangent residuals evalu-
ated at zk and wk and all degree-2 monomials of all vectors of interest. In other words,
we searched over all linear combinations of (i) rtan(zk)

2, rtan(wk)
2 and (ii) any linear com-

bination of degree-2 monomials of zk, F(zk), wk, F(wk), subject to the constraint that the
candidate potential function is non-negative. We included the tangent residuals in the basis
of our potential functions due to their central role in the analysis of the EG algorithm (we
show that the tangent residual is non-increasing across the iterates of the EG algorithm in
Theorem 2).

We also observed that any non-zero linear combination of only the tangent residuals evalu-
ated at zk and wk is not monotone for the OG algorithm. Motivated by this, we enlarged
the basis to include the degree-2 monomials of zk, F(zk), wk, F(wk) so that we had the flex-
ibility to introduce an extra correction term in the potential function. Starting from this
very flexible class of potentials functions, we gradually removed elements in the basis,
and the basis that we selected in the paper was a minimal basis such that: (i) it contains a
non-increasing potential function and (ii) it enjoys best-iterate convergence (See Lemma 17
in Appendix H.2) and (iii) the discovered potential function bounds the gap functions.

We establish the monotonicity of the potential functions in Theorem 1 and Theorem 2, which
are both stated for general monotone operators over convex sets rather than games for
technical convenience. We turn our attention back to games in Section 4.3 where we provide
formal last-iterate convergence guarantees for smooth monotone games.

4.2.1 Monotonicity of Φ(zk, wk) for OG in the Unconstrained Setting

To better illustrate our approach, we prove in Theorem 1 the monotonicity of Φ(zk, wk) for
the OG algorithm in the unconstrained setting. Note that this is already a strengthening
of [GPD20], where we provide a simple potential function that can be used to directly argue
that ∥F(zk)∥2 = O( 1

k ) without making any second-order smoothness assumption.
Theorem 1. Let F : Z → Rn be a monotone and L-Lipschitz operator. For any zk, wk ∈ Rn, the
unconstrained OG algorithm with step-size η ∈ (0, 1

2L ) satisfies Φ(zk, wk) ≥ Φ(zk+1, wk+1). 8

Proof. Since F is monotone and L-Lipschitz, we have ⟨F(zk+1)− F(zk), zk − zk+1⟩ ≤ 0 and
∥F(wk+1)− F(zk+1)∥2 − L2∥wk+1 − zk+1∥2 ≤ 0. We simplify them using the update rule of
OG and η2L2 < 1

4 . In particular, we replace zk − zk+1 by ηF(wk+1) and wk+1 − zk+1 with
ηF(wk+1)− ηF(wk).

⟨F(zk+1)− F(zk), F(wk+1)⟩ ≤ 0, (3)

∥F(wk+1)− F(zk+1)∥2 − 1
4
∥F(wk+1)− F(wk)∥2 ≤ 0. (4)

It is not hard to verify the following identity:

∥F(zk)− F(wk)∥2 + ∥F(zk)∥2 − ∥F(zk+1)− F(wk+1)∥2 − ∥F(zk+1)∥2

+ 2 · LHS of Inequality(3) + 2 · LHS of Inequality(4) =
1
2
∥F(wk) + F(wk+1)− 2F(zk))∥2.

Thus, ∥F(zk)− F(wk)∥2 + ∥F(zk)∥2 ≥ ∥F(zk+1)− F(wk+1)∥2 + ∥F(zk+1)∥2.

4.2.2 Constrained EG and OG

In the constrained setting, the approach is more complicated due to the projections and we
postpone any exposition to Appendix G.3. We state the results in the following theorem.

8In the unconstrained setting, rtan
(F,Rn)

(z) = ∥F(z)∥2.
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Theorem 2. Let Z ⊆ Rn be a closed convex set and F : Z → Rn be a monotone and L-Lipschitz
operator. For any zk ∈ Z , the EG algorithm with step-size η ∈ (0, 1

L ) satisfies rtan(zk) ≥
rtan(zk+1). Moereover, for any zk, wk ∈ Z , the OG algorithm with step-size η ∈ (0, 1

2L ) satisfies
Φ(zk, wk) ≥ Φ(zk+1, wk+1), where Φ(zk, wk) = ∥F(zk)− F(wk)∥2 + rtan(zk)

2 for all k.

4.3 Last-Iterate Convergence of EG and OG

In this section, we formally combine Lemma 3 and Theorem 2 to show the last-iterate
convergence of EG and OG with respect to the tangent residual, gap function, and the total
gap function. Recall that when all the players update their actions using the EG algorithm,
then zk is the action profile played at day 2 · k and zk+ 1

2
is the action played at day 2 · k + 1,

while when all the players update their action profile using the OG algorithm, then wk is the
action profile they play at day k. The formal proof of Theorem 3 is postponed at Appendix F.

Theorem 3. Let G = (N , {Z (i)}i∈N , { f (i)}i∈[N]) be an L-smooth and monotone game where
{Z (i)}i∈N are closed convex sets and let z∗ be a Nash Equilibrium of G. Assume that all the players
update their actions using the EG algorithm with arbitrary starting action profile z0 and step-size
η ∈ (0, 1

L ). Let D0 = 3||z0−z∗ ||√
1−(ηL)2

, then for and any T > 0 and D > 0,

max
(

rtan(zT),
GAP(zT)

D
,

TGAP(zT)√
N · D

)
≤ D0

η
√

T
,

max

(
rtan(zT+ 1

2
),

GAP(zT+ 1
2
)

D
,

TGAP(zT+ 1
2
)

√
N · D

)
≤ (1 + ηL) · D0

η
√

T
.

When all the players update their actions using the OG algorithm with arbitrary start-

ing action profiles z0, w0 and step-size η ∈ (0, 1
2L ). Denote D0 :=

√
2(2+ηL)√
1−4·(ηL)2

·√
(4 + 6η4L4)∥z0 − z∗∥2 + (16η2L2 + 6η4L4)∥w0 − z0∥2. Then for any T > 0 and D > 0,

max
(

rtan(wT+1),
GAP(wT+1)

D
,

TGAP(wT+1)√
N · D

)
≤ D0

η
√

T
.

For EG, according to our bound in Theorem 3, the optimal value of η is 1√
2L

, which implies

that for any D ≥ 0, GAP(zT) ≤ 6∥z0−z∗∥DL√
T

, and when D ≥ ∥z0 − z∗∥, then GAP(zT) ≤ 6D2L√
T

;
For OG initialized with w0 = z0, by numerically optimizing the bound on Theorem 3, we
set η to be 0.34

L , in which case for D ≥ ∥z0 − z∗∥, GAP(wT+1) ≤ 26.82D2L√
T

. Both upper

bounds matches the Ω(D2L√
T
) lower bound for EG, OG, and more generally all p-SCLI

algorithms [GPDO20, GPD20] in terms of the dependence on D, L, and T.

In Appendix I we show that EG and OG algorithm also have last-iterate convergence for
monotone variational inequalities with respect to several standard performance measures
(See Appendix D for the formal definition of monotone variational inequality).

5 Conclusion

We provide the first and tight last-iterate convergence rate of the EG and OG algorithm
for smooth monotone games and Lipschitzs and monotone VIs. Our proof is based on
the tangent residual, which is a new proximity measure to a Nash equilibrium, and an
accompanying SOS-based analysis. We believe our techniques may be useful in the study of
last-iterate convergence for other algorithms.

Acknowledgement: This work was supported by a Sloan Foundation Research Fellowship
and the NSF Award CCF-1942583 (CAREER). Part of this work was done while the authors
were visiting the Simons Institute for the Theory of Computing.
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A Potential Societal Impact

This work provides theoretical results for the convergence rate of natural online learning
algorithms in multi-player games. Online learning in multi-player games is a mathematical
model that captures the strategic interaction between agents in multi-agent systems. From
this perspective, our convergence results provide new understandings of the evolution
of the overall behavior of agents in multi-agent systems. More specifically, our results
imply that certain natural dynamics will lead the agents’ joint action profile to a stable
state, i.e., a Nash equilibrium, efficiently. As a direct application, a designer of a multi-
agent system can prescribe the learning algorithms studied in this paper, i.e., optimistic
gradient or extragradient, to agents, so that the system stabilizes quickly. Moreover, practical
applications of min-max optimization (a special case of the games studied in this paper)
include Generative Adversarial Networks (GANs) and adversarial examples. Therefore, our
results might also provide useful insights on the training of GANs and adversarial training.
To our best knowledge, we do not envision any immediate negative societal impacts of our
results, such as security, privacy, and fairness issues.

B Sum-of-Squares Programming

We first formally define SOS polynomials and SOS programs. Then we discuss how to use
SOS programs to construct certificate of non-negativity to prove the monotonicity of the
potential functions of EG and OG.

Sum-of-Squares (SOS) Polynomials. Let x be a set of variables. We denote the set of real
polynomials in x as R[x]. We say that polynomial p(x) ∈ R[x] is an SOS polynomial if there
exist polynomials {qi(x) ∈ R[x]}i∈[M] such that p(x) = ∑i∈[M] qi(x)2. We denote the set of
SOS polynomials in x as SOS[x]. Note that any SOS polynomial is non-negative.

SOS Programs. Suppose we want to prove that a polynomial g(x) ∈ R[x] is non-negative
over a semialgebraic set S = {x : gi(x) ≤ 0, ∀i ∈ [M], hi(x) = 0, ∀i ∈ [N]}, where
each gi(x) (hi(x) resp.) is also a polynomial. One way is to construct a certificate of non-
negativity, for example, by providing a set of nonnegative coefficients {pi}i∈[M] ∈ RM

≥0 and
{qi}i∈[N ] ∈ RN such that g(x) + ∑i∈[M] pi · gi(x) + ∑i∈[N] qi · hi(x) is a SOS polynomial.
Surprisingly, if g(x) is indeed non-negative over S , a certificate of non-negativity always
exists as guaranteed by a foundational result in real algebraic geometry – the Krivine-Stengle
Positivestellensatz [Kri64, Ste74], a generalization of Artin’s resolution of Hilbert’s 17th
problem [Art27]. Note that, it is sometimes necessary to allow more sophisticated forms
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of certificates than in the example above, e.g., replacing each coefficient pi with a SOS
polynomial pi(x), etc. The complexity of a certificate is parametrized by the highest degree
of the polynomial involved. The SOS programming consists of a hierarchy of algorithms,
where the d-th hierarchy is an algorithm that searches for a certificate of non-negativity up
to degree 2d based on semidefinite programming.

In Figure 1 we present a generic formulation of a degree-2d SOS program. The SOS pro-
gram takes three kinds of input, a polynomial g(x), sets of polynomials {gi(x)}i∈[M] and
{hi(x)}i∈[N]. Each polynomial in {g(x)} ∪ {gi(x)}i∈[M] ∪ {hi(x)}i∈[N] has degree of at
most 2d. The SOS program searches for an SOS polynomial in the set of polynomials
Σ = {g(x) + ∑i∈[M] pi(x) · gi(x) + ∑i∈[N] qi(x) · hi(x)}, where {pi(x)}i∈[M] and {qi(x)}i∈[N]

are polynomials in x. More precisely for each i ∈ [M], pi(x) is an SOS polynomial with
degree at most 2d −deg(gi(x)). For each i ∈ [N], qi(x) is a (not necessarily SOS) polynomial
with degree at most 2d − deg(hi(x)). Note that any polynomial in set Σ is at most degree 2d.
In our applications, we choose {gi(x)}i∈[M] to be non-positive polynomials and {hi(x)}i∈[N]

to be polynomials that are equal to 0. Any feasible solution to the program certifies the
non-negativity of g(x). We used SOSTOOLS package in MATLAB to solve any SOS program
encountered in this paper [PAV+13].

Input Fixed Polynomials.

• Polynomial g(x)
• Polynomial gi(x) ∈ R[x] for all i ∈ [M].
• Polynomial hi(x) ∈ R[x] for all i ∈ [N].

Decision Variables of the SOS Program:

• pi(x) ∈ SOS[x] is an SOS polynomial with degree at most 2d − deg (gi), for all i ∈ [M].
• qi(x) ∈ R[x] is a polynomial with degree at most 2d − deg (hi) , for all i ∈ [N].

Constraints of the SOS Program:

g(x) + ∑
i∈[M]

pi(x) · gi(x) + ∑
i∈[N]

qi(x) · hi(x) ∈ SOS[x]

Figure 1: Generic degree 2d SOS program.

SOS-based Analysis of EG and OG We mainly discuss the analysis of EG here, as the
analysis of OG is similar and also based on SOS programming. At the core of our analysis
of the EG algorithm lies the monotonicity of the squared tangent residual, which can be
formulated as the non-negativity of a degree-4 polynomial in the iterates.9 Our original
proof directly applies SOS programming to certify the non-negativity of this degree-4
polynomial. The certificate is rather complex and involves a polynomial identity of a
degree-8 polynomial in 27 variables, which we discover by solving a degree-8 SOS program.
Interested readers can find the proof in version 2 of [COZ22] in arXiv. In this version,
we include a simplified proof. By introducing auxiliary vectors that are not part of the
update rule of EG, we provide an equivalent formulation of the squared tangent residual
(Lemma 13) that is a degree-2 polynomial, which allows us to prove the monotonicity of the
squared tangent residual using a degree-2 SOS program. Detailed proof can be found in
Appendix G.3.

For OG, we are not able to show that the squared tangent residual is monotone. Inspired
by the adaptive potential proof in [GPD20], we suspect that some extra correction term is
needed to construct the potential function. Instead of trying to devise such a correction
term manually, we manage to directly find one by searching over a family of performance
measures using SOS programming. The search we perform is heuristic but might be helpful
to discover potential functions in other problems. See Section 4.2 for a more detailed
discussion.

9The tangent residual is not a polynomial, but the squared tangent residual is a degree-4 polynomial
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C Additional Related Work – other Computer-Aided Proofs

A powerful computer-aided proof framework – the performance estimation problem (PEP)
technique (e.g., [DT14, THG17b]) is widely applied to analyze first-order iterative methods.
Indeed, the last-iterate convergence rate of EG in the unconstrained setting by [GLG21]
is obtained via the PEP technique. Although the PEP framework can handle projections
[THG17a, RTBG20, GMG+22, DTdB21], the main challenge for applying it to the constrained
setting is that, the PEP framework requires the performance measures to be polynomials
of degree 2 or less (see e.g., [THG17a]).10 In fact, solving the PEP is equivalent to solving
a degree-2 SOS program, which can be viewed as the dual of the PEP [TVT21]. In the
unconstrained setting for EG, the performance measure is a degree-2 polynomial – the
squared norm of the operator, and that is why one can either use the PEP (as in [GLG21])
or a degree-2 SOS to certify its monotonicity (Theorem 4). In the constrained setting for
EG, we use the squared tangent residual to measure the algorithm’s progress, which
in our original formulation is a degree 4 polynomial, making the PEP framework not
directly applicable.11 As the SOS approach can accommodate polynomial objectives and
constraints of any degree, we could directly apply it to certify the monotonicity of the
tangent residual in the constrained setting, although the resulting proof is complex. With
the new formulation of the squared tangent residual (Lemma 13), we manage to simplify
our proof and derive it using a degree-2 SOS program. We believe an interesting future
direction is to understand whether there are natural settings in optimization where degree-2
SOS programs are provably insufficient and higher degree SOS programs are necessary.

[LRP16] analyze first-order iterative algorithms for convex optimization using a technique
inspired by the stability analysis from control theory. They model first-order iterative
algorithms using discrete-time dynamical systems and search over quadratic potential
functions that satisfy a set of Integral Quadratic Constraints (IQC). [ZBLG21] extend the
IQC framework to study smooth and strongly monotone VIs in the unconstrained setting.

SOS programming has been employed in the design and analysis of algorithms in convex
optimization. To the best of our knowledge, these results only concern minimization of
smooth and strongly-convex functions in the unconstrained setting. [FMP18] propose a
framework to search the optimal parameters of the algorithm, e.g., step size. They use SOS
programming to search over quadratic potential functions and parameters of the algorithm
with the goal of optimizing the exponential decay rate of the potential function. [TVT21]
proposes to use SOS programming to study the convergence rates of first-order methods in
unconstrained convex optimization.

D Additional Preliminaries

We use z[i] to denote the i-th coordinate of z ∈ Rn and ei to denote the unit vector such that
ei[j] := 1[i = j], the dimension of ei is going to be clear from context. For z ∈ Rn and D > 0,
we use B(z, D) = {z′ ∈ Rn : ∥z′ − z∥ ≤ D} to denote the ball of radius D, centered at z.

Definition 5 (Variational Inequality). Given a closed convex set Z ⊆ Rn and an operator
F : Z → Rn, a variational inequality problem is defined as follows: find z∗ ∈ Z such that

⟨F(z∗), z∗ − z⟩ ≤ 0 ∀z ∈ Z .

Min-Max Saddle Points. A special case of the variational inequality problem is the con-
strained min-max problem minx∈X maxy∈Y f (x, y), where X and Y are closed convex sets

10More specifically, the PEP framework requires the performance measure as well as the constraints
to be linear in (i) the function values at the iterates and (ii) the Gram matrix of a set of vectors consisting
of the iterates and their gradients.

11The tangent residual is the square root of a rational function and can only be even harder to
handle.
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in Rn, and f (·, ·) is smooth, convex in x, and concave in y. It is well known that if one set

F(x, y) =
(

∇x f (x, y)
−∇y f (x, y)

)
, then F(x, y) is a monotone and Lipschitz operator [? ].

Definition 6 (Gap Function for monotone VIs). Similar to games, for a monotone VI with operator
F : Z → Rn on closed convex set Z , a standard way to measure the proximity of z ∈ Z to the
solution of the monotone VI, is through the gap function for VIs: maxz′∈Z∩B(z,D) ⟨F(z), z − z′⟩. We
abuse notation and for a monotone operator F and closed convex set Z , we denote by GAPF,Z ,D(z) =
maxz′∈Z∩B(z,D) ⟨F(z), z − z′⟩.

When F,Z and D are clear from context, we omit subscripts and write the gap function for VIs at z
as GAP(z). Moreover, we refer to the gap function for VIs, simply as the gap function, when there is
no ambiguity if we are refer to the gap function for games or the gap function for VIs.
Lemma 4. [Restatement of Lemma 2 for VIs] Let F : Z → Rn be a monotone operator on convex
closed set Z . For z ∈ Z , we have GAPF,Z ,D(z) ≤ D · rtan

(F,Z)
(z).

Proof. The proof follows in the exact same way as the proof of Lemma 2 for the gap function
for monotone games (see Appendix E.2).

D.1 Remark about choice of D in Definition 2

Remark 5. Consider a smooth monotone game G, and let {zEG
k , zEG

k+ 1
2
}k≥0 ({zOG

k , wOG
k }k≥0 resp.)

be the action profile when all players update their actions using the EG (OG resp.) algorithm and let
z∗ be a Nash equilibrium of G. Sometimes the gap function is defined to allow z′ to take value in Z ∩
B(z∗, Θ(∥z∗ − zEG

0 ∥)) for the EG algorithm and Z ∩B(z∗, Θ(∥z∗ − zOG
0 ∥+ ∥zOG

0 − wOG
0 ∥)) for

the OG algorithm.

In Lemma 8, by choosing the step size appropriately, we show that

max
k≥0

(∥∥∥zEG
k − z∗

∥∥∥,
∥∥∥zEG

k+ 1
2
− z∗

∥∥∥) =O
(∥∥∥zEG

0 − z∗
∥∥∥),

max
k≥0

(∥∥∥zOG
k − z∗

∥∥∥,
∥∥∥wOG

k − z∗
∥∥∥) =O

(
max(

∥∥∥zOG
0 − z∗

∥∥∥,
∥∥∥wOG

0 − zOG
0

∥∥∥)).

Thus, the set {zEG
k , zEG

k+ 1
2
}k≥0 is contained in B(z∗, Θ(∥z∗ − zEG

0 ∥)) and set {zOG
k , wOG

k }k≥0 is

contained in B(z∗, Θ(∥z∗ − zOG
0 ∥+ ∥zOG

0 − wOG
0 ∥)).

D.2 Equivalent Definitions of the Tangent Residual

In Lemma 5 we present several equivalent formulations of the tangent residual.
Lemma 5. Let Z be a closed convex set and F : Z → Rn be an operator. Denote NZ (z) the normal
cone of z and JZ (z) := {z}+ TZ (z), where TZ (z) = {z′ ∈ Rn : ⟨z′, a⟩ ≤ 0, ∀a ∈ NZ (z)} is the
tangent cone of z. Then all of the following quantities are equivalent:

1.
√
∥F(z)∥2 − max a∈N̂Z (z),

⟨F(z),a⟩≤0

⟨F(z), a⟩2

2. min a∈N̂Z (z),
⟨F(z),a⟩≤0

∥F(z)− ⟨F(z), a⟩ · a∥

3.
∥∥∥ΠTZ (z)

[
− F(z)

]∥∥∥
4.
∥∥∥ΠJZ (z)

[
z − F(z)

]
− z
∥∥∥

5.
∥∥∥−F(z)− ΠNZ (z)

[
− F(z)

]∥∥∥
6. min

a∈NZ (z)
∥F(z) + a∥
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Proof. (quantity 1 = quantity 2). Observe that

min
a∈N̂Z (z),
⟨F(z),a⟩≤0

∥F(z)− ⟨F(z), a⟩ · a∥2 = ∥F(z)∥2 − max
a∈N̂Z (z),
⟨F(z),a⟩≤0

⟨F(z), a⟩2 ·
(

2 − ∥a∥2
)

.

Therefore, it is enough to show that max a∈N̂Z (z),
⟨F(z),a⟩≤0

⟨F(z), a⟩2 · (2 − ∥a∥2) =

max a∈N̂Z (z),
⟨F(z),a⟩≤0

⟨F(z), a⟩2. If N̂Z (z) = {(0, . . . , 0)}, then the equality holds trivially.

Now we assume that {(0, . . . , 0)} ⊊ N̂Z (z) and consider any a ∈ N̂Z (z)\(0, . . . , 0). Let
c ∈

[
1, 1

∥a∥

]
. By Definition 3, ∥a∥ ≤ 1, which implies that c · a ∈ N̂Z (z). We try to maximize

the following objective

⟨F(z), c · a⟩2 ·
(

2 − c2∥a∥2
)
=

⟨F(z), a⟩2

∥a∥2 · c2∥a∥2 ·
(

2 − c2∥a∥2
)

.

One can easily verify that function c2∥a∥2 · (2 − c2∥a∥2) is maximized when c2∥a∥2 = 1 ⇔
c = 1

∥a∥ . Thus when {(0, . . . , 0)} ⊊ N̂Z (z),

max
a∈N̂Z (z),
⟨F(z),a⟩≤0

⟨F(z), a⟩2 ·
(

2 − ∥a∥2
)
= max

a∈N̂Z (z),
⟨F(z),a⟩≤0,

∥a∥=1

⟨F(z), a⟩2 ·
(

2 − ∥a∥2
)

= max
a∈N̂Z (z),
⟨F(z),a⟩≤0,

∥a∥=1

⟨F(z), a⟩2

= max
a∈N̂Z (z),
⟨F(z),a⟩≤0

⟨F(z), a⟩2,

which concludes the proof.

(quantity 3 = quantity 4). By definition, JZ (z) = {z}+ TZ (z). Thus we have∥∥∥ΠJZ (z)

[
z − F(z)

]
− z
∥∥∥ =

∥∥∥ΠTZ (z)

[
− F(z)

]∥∥∥.

(quantity 4 = quantity 5). By definition, the tangent cone TZ (z) is the polar cone of the
normal cone NZ (z). Since NZ (z) is a closed convex cone, by Moreau’s decomposition
theorem, we have for any vector x ∈ Rn,

x = ΠNZ (z)(x) + ΠTZ (z)(x),
〈

ΠNZ (z)(x), ΠTZ (z)(x)
〉
= 0.

Thus it is clear that we have∥∥∥ΠJZ (z)

[
z − F(z)

]
− z
∥∥∥ =

∥∥∥ΠTZ (z)

[
− F(z)

]∥∥∥
=
∥∥∥−F(z)− ΠNZ (z)

[
− F(z)

]∥∥∥.

(quantity 5 = quantity 6). Denote a∗ := ΠNZ (z)

[
− F(z)

]
. By definition of projection, we

have

a∗ = argmin
a∈NZ (z)

∥F(z) + a∥2.

Thus ∥∥∥−F(z)− ΠNZ (z)

[
− F(z)

]∥∥∥2
= ∥F(z) + a∗∥2 = min

a∈NZ (z)
∥F(z) + a∥2.

22



(quantity 6 = quantity 2). Let a ∈ NZ (z) such that ⟨F(z), a⟩ ≤ 0. Observe that for any c ≥ 0,
c · a ∈ NZ (z) and ⟨F(z), c · a⟩ ≤ 0. Consider the following minimization problem,

g(a) = min
c≥0

∥F(z) + c · a∥

By taking first-order optimality conditions, one can easily verify that when a ̸= (0, . . . , 0),
g(a) = ∥F(z) + ⟨F(z), a

∥a∥ ⟩
a

∥a∥∥ and g(0, . . . , 0) = ∥F(z)∥. Since NZ (z) is a cone and for any
a and c ∈ arg minc≥0 ∥F(z) + c · a∥, we have that ∥c · a∥ ≤ 1, we infer that

min
a∈NZ (z)

∥F(z) + a∥ = min
a∈NZ (z)

g(a) = min
a∈N̂Z (z)

∥F(z) + ⟨F(z), a⟩ · a∥

Observe that for any a ∈ N̂Z (z) such that ⟨F(z), a⟩ ≥ 0, then ∥F(z) + ⟨F(z), a⟩ · a∥ ≥ ∥F(z)∥.
Since g(0, . . . , 0) = ∥F(z)∥ we have that,

min
a∈N̂Z (z)

∥F(z) + ⟨F(z), a⟩ · a∥ = min
a∈N̂Z (z),
⟨F(z),a⟩≤0

∥F(z) + ⟨F(z), a⟩ · a∥,

which concludes the proof.

In the following Lemma, we show a useful property of the tangent residual that we use
repeatedly.

Lemma 6. Let Z ⊆ Rn be a closed convex set and F : Z → Rn be an operator. Let η > 0 and
z1, z2, z3 ∈ Z be three points such that z1 = ΠZ [z2 − ηF(z3)], then we have

rtan(z1) ≤
∥∥∥∥ z2 − z1

η
+ F(z1)− F(z3)

∥∥∥∥.

Proof. Since z1 = ΠZ [z2 − ηF(z3)], we have z2−ηF(z3)−z1
η = z2−z1

η − F(z3) ∈ NZ (z1). Then
by item 6 in Lemma 5 we have

rtan(z1) = min
c∈NZ (z1)

∥F(z1) + c∥ ≤
∥∥∥∥ z2 − z1

η
+ F(z1)− F(z3)

∥∥∥∥.

E Missing Proofs and Details from Section 3

E.1 The Natural Residual and Its Relation to the Tangent Residual

We formally define the natural residual for monotone operators over closed convex sets in
Definition 7, and show in Lemma 7 how it is related to the tangent residual.

Definition 7. Let Z be a closed convex set in Rn and consider a monotone operator F : Z → Rn.
The natural residual at z ∈ Z is defined as follows

rnat
(F,Z)(z) = ∥z − ΠZ (z − F(z))∥.

Given a monotone game G, an action profile z∗ is a Nash equilibrium iff rnat
(FG ,ZG )

(z∗) = 0. In
Lemma 7, we show that the tangent residual upper bounds the the natural residual. See
Figure 2 for illustration of how the tangent residual relates to the natural residual.

Lemma 7. Let Z be a closed convex set and consider a monotone operator F : Z → Rn. For any
z ∈ Z , rtan

(F,Z)
(z) ≥ rnat

(F,Z)
(z).
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Proof. Note that for any c ∈ NZ (z), ΠZ (z + c) = z. Thus for any c ∈ NZ (z), we have

rnat
(F,Z)(z) = ∥z − ΠZ (z − F(z))∥

= ∥ΠZ (z + c)− ΠZ (z − F(z))∥
≤ ∥F(z) + c∥,

where the last inequality holds because ΠZ (·) is non-expansive. Thus rnat
(F,Z)

(z) ≤
minc∈NZ (z) ∥F(z) + c∥ = rtan

(F,Z)
(z) by item 6 in Lemma 5.

! + #!(!)

!
! − #(!)

&

Figure 2: Illustration of the tangent residual and the natural residual. The blue line represents
the tangent residual and the red line represents the natural residual. It is clear that the
tangent residual upper bounds the natural residual.

Due to the above lemma, an upper bound of the tangent residual is also an upper bound of
the natural residual.

E.2 Proof of Lemma 2

Proof of Lemma 2: We first show that GAPG,D(z) ≤ D · rtan
G (z).

If ⟨a, F(z)⟩ ≥ 0 for all a ∈ N̂(z), then by item 1 of Lemma 5 we have rtan(z) = ∥F(z)∥. Thus
for any z′ ∈ Z , by Cauchy-Schwarz inequality, we have

⟨F(z), z − z′⟩ ≤ ∥F(z)∥∥z − z′∥ ≤ D · rtan(z).

Otherwise, by item 2 in Lemma 5 there exists a ∈ N̂(z) such that ∥a∥ = 1, ⟨a, F(z)⟩ < 0 and
rtan(z) = ∥F(z)− ⟨a, F(z)⟩a∥. Then for any z′ ∈ Z , we have〈

F(z), z − z′
〉
=
〈

F(z)− ⟨a, F(z)⟩a, z − z′
〉
+ ⟨a, F(z)⟩ ·

〈
a, z − z′

〉
≤
〈

F(z)− ⟨a, F(z)⟩a, z − z′
〉

≤ ∥F(z)− ⟨a, F(z)⟩a∥∥z − z′∥
≤ D · rtan(z),

where we use ⟨a, F(z)⟩ < 0 and ⟨a, z − z′⟩ ≥ 0 in the first inequality and Cauchy-Schwarz
inequality in the second inequality. Thus for all D > 0,

GAPG,D(z) ≤ D · rtan
G (z). (5)

Now we prove that TGAPG,D(z) ≤
√

N · D · rtan
G (z). Let z∗(i) =

minz′(i)∈Z(i)∩B(z(i),D) f (z(i), z(−i)) and z∗ = (z∗(1), . . . , z∗(N)). By monotonicity of F,

we have that for any i ∈ N and z′(i) ∈ Z (i)〈
F(z′(i), z(−i))− F(z), (z′(i), z(−i))− z

〉
=
〈
∇z(i) f (i)(z′(i), z(−i))−∇z(i) f (i)(z), z′(i) − z(i)

〉
≥ 0,

Moreover, since f (i) is a continues differentiable function, then g(z(i)) = f (z′(i), z(−i)) :
Z (i) → R is a convex function, which further implies that

f (i)(z)− f (z∗(i), z(−i)) ≤
〈
∇z(i) f (i)(z), z(i) − z∗(i)

〉
.
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Thus,

TGAPG,D(z) = ∑
i∈N

f (i)(z)− f (z∗(i), z(−i))

≤⟨F(z), z − z∗⟩
≤ max

z′∈Z∩B(z,
√

N·D)

〈
F(z), z − z′

〉
= GAPG,

√
N·D(z).

The second inequality follows because for each i ∈ N , ∥z(i) − z∗(i)∥ ≤ D, which implies

that ∥z − z∗∥ =

√
∑i∈N ∥z(i) − z∗(i)∥2 ≤

√
N · D. The proof follows by Inequality (5). ■

F Missing Proofs in Section 4

In this section, we present the missing proofs in Section 4. Finding a Nash Equilibrium
for a smooth monotone game is a special instance of solving a monotone VI (Definition 5).
Thus, for simplicity and technical convenience, we show the last-iterate convergence rate
of EG (OG resp.) for monotone VIs in Appendix G (Appendix H resp.) with respect to
the tangent residual (Definition 4), the gap function for VIs (Definition 6), and the natural
residual (Definition 7). In this section, we show how to apply the last-iterate convergence
rate of EG (Appendix G) and OG (Appendix H) for smooth monotone games and we also
show last-iterate convergence rates for some additional performance measure.

Proof of Lemma 3: Consider an instance (I) of the monotone VI on operator FG on closed
convex set ZG . By Lemma 1, z∗ is a solution to the monotone VI (I).
Observe that the updates of EG (OG resp.) algorithm with step-size η on the monotone VI
(I) coincide with the action profile when all players update their actions using EG (OG
resp.) algorithm with step-size η. Thus, the proof follows by Lemma 12 and Corollary 4. ■

Proof of Theorem 2: Consider an instance (I) of the monotone VI on operator FG on closed
convex set ZG . By Lemma 1, z∗ is a solution to the monotone VI (I).
Observe that the updates of EG (OG resp.) algorithm with step-size η on the monotone VI
(I) coincide with the action profile when all players update their actions using EG (OG
resp.) algorithm with step-size η. Thus, the proof follows by Theorem 5 and Theorem 7. ■

Proof of Theorem 3: Consider an instance (I) of the monotone VI on operator FG on closed
convex set ZG . By Lemma 1, z∗ is a solution to the monotone VI (I).
Observe that the updates of EG (OG resp.) algorithm with step-size η on the monotone VI
(I) coincide with the action profile when all players update their actions using EG (OG
resp.) algorithm with step-size η.

Thus, when all the players update their strategies using the EG algorithm, by Theorem 6
and Lemma 9 we have that rtan

G (zT) = rtan
(FG,ZG )

(zT) ≤ 1√
T

3D||z0−z∗ ||
η
√

1−(ηL)2
and rtan

G (zT+ 1
2
) =

rtan
(FG,ZG )

(zT+ 1
2
) ≤ 1√

T
(1+ηL)·3D||z0−z∗ ||

η
√

1−(ηL)2
. When all the players update their strategies us-

ing the OG algorithm, by Theorem 8 we have that rtan
G (wT+1) = rtan

FG ,ZG
(wT+1) ≤ 1√

T
·

√
2(2+ηL)·

√
(4+6η4L4)∥z0−z∗∥2+(16η2L2+6η4L4)∥w0−z0∥2

η·
√

1−4·(ηL)2
. The proof concludes by Lemma 2. ■

F.1 Bounded Iterates of EG and OG

Lemma 8. Let G = (N , {Z (i)}i∈N , { f (i)}i∈[N]) be an L-smooth and monotone game where
{Z (i)}i∈N are closed convex sets and let z∗ be a Nash Equilibrium of G. Assume that all the players
update their actions using the EG algorithm with arbitrary starting action profile z0 and step-size
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η ∈ (0, 1
L ). Then for and any k ≥ 0,

∥zk − z∗∥ ≤∥z0 − z∗∥,∥∥∥zk+ 1
2
− z∗

∥∥∥ ≤
(

1 +
1√

1 − η2L2

)
∥z0 − z∗∥.

Assume that all the players update their actions using the OG algorithm with arbitrary starting
action profiles z0,w0 and step-size η ∈ (0, 1

2L ). Then for any k ≥ 1,

∥zk − z∗∥ ≤

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2,

∥wk − z∗∥ ≤ 2 ·

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2.

Proof. Consider an instance (I) of the monotone VI on operator FG on closed convex set
ZG . By Lemma 1, z∗ is a solution to the monotone VI (I).
Observe that the updates of EG (OG resp.) algorithm with step-size η on the monotone
VI (I) coincide with the strategy profiles when all players update their strategies using
EG (OG resp.) algorithm with step-size η. Thus, the proof follows by Corollary 1 and
Corollary 3.

F.2 Auxiliary Lemma

Lemma 9. Let G = (N , {Z (i)}i∈N , { f (i)}i∈[N]) be an L-smooth and monotone game where
{Z (i)}i∈N are closed convex sets. Assume that all the players update their actions using the
EG algorithm with arbitrary starting action profile z0 and step-size η, then for any k ≥ 0,
rtan
(FG ,ZG )

(zk+ 1
2
) ≤ (1 + ηL)rtan

(FG ,ZG )
(zk).

Proof. The proof follows from the following sequence of inequalities,

ηrtan
(FG ,ZG )

(
zk+ 1

2

)
≤
∥∥∥zk − zk+ 1

2
+ ηF(zk+ 1

2
)− ηF(zk)

∥∥∥
≤
∥∥∥zk − zk+ 1

2

∥∥∥+ ∥∥∥ηF(zk+ 1
2
)− ηF(zk)

∥∥∥
≤(1 + ηL)

∥∥∥zk − zk+ 1
2

∥∥∥
=(1 + ηL)rnat

(ηFG ,ZG )
(zk)

≤(1 + ηL)rtan
(ηFG ,ZG )

(zk)

=(1 + ηL)ηrtan
(FG ,ZG )

(zk).

The first inequality follows by Lemma 6, the third inequalit follows by L-lipschitzness of F.
The first equality follows from the fact that zk+ 1

2
= ΠZ (zk − ηF(zk)) and Definition 7. The

fourth inequality follows by Lemma 7. The last equality follows by Definition 4.

G Missing Details for the Analysis of the Extragradient Algorithm

In this section, we provide the last-iterate convergence rate of the EG algorithm for monotone
VIs (Definition 5). We establish last-iterate convergence rate w.r.t. the gap function for VIs
(Definition 6), the natural residual (Definition 7) and the tangent residual (Definition 4).
For the rest of this section, we abuse notation and refer to the gap function for VIs as the
gap function. We show in Appendix F (Appendix I resp.) last-iterate convergence rates for
additional performance measures for smooth monotone games (monotone VIs resp.).
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We prove last-iterate convergence rate for EG w.r.t. the gap function, natural residual and
tangent residual in Theorem 6 at Appendix G.3. The last-iterate convergence rate for the
performance measures we mentioned follow from the last-iterate convergence rate of the
tangent residual rtan(zT).

Let Z ⊆ Rn be a closed convex set and F : Z → R be an operator. Let z0 ∈ Z be an arbitrary
starting point and {zk, zk+ 1

2
}k≥0 be the iterates of the Extragradient algorithm, according to

Expression (2), as follows:

zk+ 1
2
=ΠZ [zk − ηF(zk)] = arg min

z∈Z
∥z − (zk − ηF(zk))∥,

zk+1 =ΠZ
[
zk − ηF(zk+ 1

2
)
]
= arg min

z∈Z

∥∥∥z −
(

zk − ηF(zk+ 1
2
)
)∥∥∥.

This appendix is organized as follows. The best-iterate convergence rate for the EG al-
gorithm w.r.t. ∥zk − zk+ 1

2
∥ is known [Kor76? ]. In Appendix G.1 we include the proof

for completeness. A known corollary of the best-iterate iterate for the EG, is that the EG
algorithm has bounded iterates (e.g. for z∗ be a solution to the monotone VI, then for all
k ≥ 0, ∥zk − z∗∥, ∥zk+ 1

2
− z∗∥ ≤ O(∥z0 − z∗∥). We include the proof in Appendix G.1.1

for completeness. In Appendix G.2 we show how to upper bound the tangent residual
at zk (rtan(zk)) at the best-iterate. In Appendix G.3 we show that the tangent residual in
non-increasing across iterates of the EG algorithm, and we conclude by showing last-iterate
convergence rates of the EG algorithm.

G.1 Best-Iterate Convergence of EG

Lemma 10 ([Kor76? ]). Let Z be a closed convex set in Rn, F(·) be a monotone and L-Lipschitz
operator mapping from Z to Rn and let z∗ ∈ Z be a solution of the monotone VI (See Definition 5).
For any zk ∈ Z , the EG algorithm with step size η ∈ (0, 1

L ). satisfies,

∥zk − z∗∥2 ≥ ∥zk+1 − z∗∥2 + (1 − η2L2)∥zk − zk+ 1
2
∥2. (6)

Proof. By Pythagorean inequality,

∥zk+1 − z∗∥2 ≤ ∥zk − ηF(zk+ 1
2
)− z∗∥2 − ∥zk − ηF(zk+ 1

2
)− zk+1∥2

= ∥zk − z∗∥2 − ∥zk − zk+1∥2 + 2η⟨F(zk+ 1
2
), z∗ − zk+1⟩

= ∥zk − z∗∥2 − ∥zk − zk+1∥2 + 2η⟨F(zk+ 1
2
), z∗ − zk+ 1

2
⟩+ 2η⟨F(zk+ 1

2
), zk+ 1

2
− zk+1⟩.
(7)

We first use monotonicity of F(·) to argue that ⟨F(zk+ 1
2
), z∗ − zk+ 1

2
⟩ ≤ 0.

Fact 1. For all z ∈ Z , ⟨F(z), z∗ − z⟩ ≤ 0.

Proof.

0 ≤ ⟨F(z∗)− F(z), z∗ − z⟩ (monotonicity of F(·))
= ⟨F(z∗), z∗ − z⟩ − ⟨F(z), z∗ − z⟩
≤ −⟨F(z), z∗ − z⟩ (z∗ is a solution of the monotone VI)
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We can simplify Equation (7) using Fact 1:

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − ∥zk − zk+1∥2 + 2η⟨F(zk+ 1
2
), zk+ 1

2
− zk+1⟩

= ∥zk − z∗∥2 − ∥zk − zk+ 1
2
∥2 − ∥zk+ 1

2
− zk+1∥2 − 2⟨zk − ηF(zk+ 1

2
)− zk+ 1

2
, zk+ 1

2
− zk+1⟩

= ∥zk − z∗∥2 − ∥zk − zk+ 1
2
∥2 − ∥zk+ 1

2
− zk+1∥2

− 2⟨zk − ηF(zk)− zk+ 1
2
, zk+ 1

2
− zk+1⟩ − 2⟨ηF(zk)− ηF(zk+ 1

2
), zk+ 1

2
− zk+1⟩

≤ ∥zk − z∗∥2 − ∥zk − zk+ 1
2
∥2 − ∥zk+ 1

2
− zk+1∥2 − 2η⟨F(zk)− F(zk+ 1

2
), zk+ 1

2
− zk+1⟩

The last inequality is because ⟨zk − ηF(zk)− zk+ 1
2
, zk+ 1

2
− zk+1⟩ ≥ 0, which follows from

the that fact that zk+ 1
2
= ΠZ [zk − ηF(zk)] and zk+1 ∈ Z .

Finally, since F(·) is L-Lipschitz, we know that

−⟨F(zk)− F(zk+ 1
2
), zk+ 1

2
− zk+1⟩ ≤ ∥F(zk)− F(zk+ 1

2
)∥ · ∥zk+ 1

2
− zk+1∥ ≤ L∥zk − zk+ 1

2
∥ · ∥zk+ 1

2
− zk+1∥.

So we can further simplify the inequality as follows:

∥zk+1 − z∗∥2 ≤∥zk − z∗∥2 − ∥zk − zk+ 1
2
∥2 − ∥zk+ 1

2
− zk+1∥2 − 2η⟨F(zk)− F(zk+ 1

2
), zk+ 1

2
− zk+1⟩

≤∥zk − z∗∥2 − ∥zk − zk+ 1
2
∥2 − ∥zk+ 1

2
− zk+1∥2 + 2ηL∥zk − zk+ 1

2
∥ · ∥zk+ 1

2
− zk+1∥

≤∥zk − z∗∥2 − (1 − η2L2)∥zk − zk+ 1
2
∥2

Hence,

∥zk − z∗∥2 ≥ ∥zk+1 − z∗∥2 + (1 − η2L2)∥zk − zk+ 1
2
∥2.

G.1.1 Bounded Iterates of EG with Constant Step Size

Corollary 1. Let Z be a closed convex set in Rn, F(·) be a monotone and L-Lipschitz operator
mapping from Z to Rn and let z∗ ∈ Z be a solution of the VI (See Definition 5). Let z0 ∈ Z be
an arbitrary starting point and {zk, zk+ 1

2
}k≥0 be the iterates of the EG algorithm with step size

η ∈ (0, 1
L ). Then for all k ≥ 0,

∥zk − z∗∥ ≤∥z0 − z∗∥,∥∥∥zk+ 1
2
− z∗

∥∥∥ ≤
(

1 +
1√

1 − η2L2

)
∥z0 − z∗∥.

Proof. By Lemma 10 we have that for any k ≥ 0,

∥zk+1 − z∗∥ ≤∥zk − z∗∥,∥∥∥zk+ 1
2
− zk

∥∥∥ ≤ 1√
1 − η2L2

∥zk − z∗∥.

By triangle inequality,

∥∥∥zk+ 1
2
− z∗

∥∥∥ ≤
∥∥∥zk+ 1

2
− zk

∥∥∥+ ∥zk − z∗∥ ≤
(

1 +
1√

1 − η2L2

)
∥zk − z∗∥,

which concludes the proof
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G.2 Best-Iterate of Tangent Residual

Lemma 11. Let Z be a closed convex set in Rn, F(·) be a monotone and L-Lipschitz opera-
tor mapping from Z to Rn. For any zk ∈ Z , the EG algorithm update satisfies rtan(zk+1) ≤(
1 + ηL + (ηL)2) ||zk−zk+1/2||

η .

Proof. We need the following fact for our proof.

Fact 2. ∥zk+ 1
2
− zk+1∥ ≤ ηL∥zk − zk+ 1

2
∥. Moreover, when ηL < 1, ∥zk+ 1

2
− zk+1∥ ≤ ∥zk−zk+1∥

1−ηL .

Proof. Recall that zk+ 1
2
= ΠZ [zk − ηF(zk)] and zk+1 = ΠZ

[
zk − ηF(zk+ 1

2
)
]
. By the non-

expansiveness of the projection operator and the L-Lipschitzness of operator F, we have
that ∥zk+ 1

2
− zk+1∥ ≤ ∥η(F(zk+ 1

2
)− F(zk))∥ ≤ ηL∥zk − zk+ 1

2
∥.

Finally, by the triangle inequality

∥zk − zk+1∥ ≥
∥∥∥zk − zk+ 1

2

∥∥∥− ∥∥∥zk+ 1
2
− zk+1

∥∥∥ ≥ (1 − ηL)
∥∥∥zk − zk+ 1

2

∥∥∥.

Now we prove Lemma 11. By the L-Lipschitzness of operator F we have

∥F(zk+1)− F(zk+ 1
2
)∥ ≤ L∥zk+1 − zk+ 1

2
∥ ≤ ηL2∥zk − zk+ 1

2
∥. (8)

Recall that zk+1 = ΠZ
[
zk − ηF(zk+ 1

2
)
]
. Using Lemma 6, we have

rtan(zk+1) ≤
∥∥∥∥ zk − zk+1

η
+ F(zk+1)− F(zk+ 1

2
)

∥∥∥∥
≤∥zk − zk+1∥

η
+ ∥F(zk+1)− F(zk+ 1

2
)∥

≤
∥zk − zk+1∥+ (ηL)2∥zk − zk+ 1

2
∥

η

≤
||zk − zk+ 1

2
||+ ||zk+ 1

2
− zk+1||+ (ηL)2||zk − zk+ 1

2
||

η

≤
(

1 + ηL + (ηL)2
) ||zk − zk+ 1

2
||

η
.

The second and the fourth inequality follow from the triangle inequality. The third inequality
follows from Inequality (8). In the final inequality we use ||zk+ 1

2
− zk+1|| ≤ ηL||zk − zk+ 1

2
||

by Fact 2.

Lemma 12. Let Z be a closed convex set in Rn, F(·) be a monotone and L-Lipschitz operator
mapping from Z to Rn and let z∗ ∈ Z be a solution of the VI. For arbitrary starting point z0 ∈ Z ,
let {zk, zk+ 1

2
}k≥0 be the iterates of the EG algorithm with step size η ∈ (0, 1

L ). For any T > 0, there
exists t∗ ∈ [T] such that:∥∥∥zt∗ − zt∗+ 1

2

∥∥∥2
≤ 1

T
∥z0 − z∗∥2

1 − (ηL)2 , AND rtan(zt∗+1) ≤
1 + ηL + (ηL)2

η

1√
T

∥z0 − z∗∥√
1 − (ηL)2

.

Proof. By Lemma 10 we have

∥z0 − z∗∥2 ≥ ∥zT+1 − z∗∥2 + (1 − η2L2)
T

∑
k=0

∥zk − zk+ 1
2
∥2 ≥ (1 − η2L2)

T

∑
k=0

∥zk − zk+ 1
2
∥2

Thus there exists a t∗ ∈ [T] such that ∥zt∗ − zt∗+ 1
2
∥2 ≤ ∥z0−z∗∥2

T(1−η2L2)
. We conclude the proof by

applying Lemma 11.
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G.3 Last-Iterate Convergence of EG with Constant Step Size

In this section, we show that the last-iterate convergence rate is O( 1√
T
). In particular, we

prove that the tangent residual is non-increasing, which, in combination with Lemma 12,
implies the last-iterate convergence rate of the tangent residual for monotone VIs. To
establish the monotonicity of the tangent residual, we combine SOS programming with the
low-dimensionality of the EG update rule. To better illustrate our approach, we first prove
the result in the unconstrained setting (Appendix G.3.1), then show how to generalize it to
the constrained setting (Appendix G.3.2).

G.3.1 Warm Up: Unconstrained Case

As a warm-up, we consider the unconstrained setting where Z = Rn. Although the last-
iterate convergence rate is known in the unconstrained setting due to [GPDO20, GLG21],
we provide a simpler proof that also permits a larger step size. Our analysis holds for any
step size η ∈ (0, 1

L ), while the previous analysis requires η ≤ 1√
2L

[GLG21].

In Theorem 4, we show that the tangent residual is monotone in the unconstrained setting.12

Our approach is to apply SOS programming to search for a certificate of non-negativity
for ∥F(zk)∥2 − ∥F(zk+1)∥2 for every k, over the semialgebraic set defined by the following
polynomial constraints in variables {zi[ℓ], ηF(zi)[ℓ]}i∈{k,k+ 1

2 ,k+1},ℓ∈[n]:

zk+ 1
2
[ℓ]− zk[ℓ] + ηF(zk)[ℓ] = 0, zk+1[ℓ]− zk[ℓ] + ηF(zk+ 1

2
)[ℓ] = 0, ∀ℓ ∈ [n], (EG Update)∥∥ηF(zi)− ηF(zj)

∥∥2 − (ηL)2∥∥zi − zj
∥∥2 ≤ 0, ∀i, j ∈ {k, k +

1
2

, k + 1}, (Lipschitzness)〈
ηF(zi)− ηF(zj), zj − zi

〉
≤ 0, ∀i, j ∈ {k, k +

1
2

, k + 1}. (Monotonicity)

We always multiply F with η in the constraints as it will be convenient later. We use K
to denote the set {k, k + 1

2 , k + 1}. To obtain a certificate of non-negativity, we apply SOS
programming to search for a degree-2 SOS proof. More specifically, we want to find non-
negative coefficients {λ∗

i,j, µ∗
i,j}i>j,i,j∈K and degree-1 polynomials γ

(ℓ)
1 (w) and γ

(ℓ)
2 (w) in

R[w] for each ℓ ∈ [n], where w := {zi[ℓ], ηF(zi)[ℓ]}i∈K,ℓ∈[n], such that the following is
an SOS polynomial:

∥ηF(zk)∥2 − ∥ηF(zk+1)∥2 + ∑
i>j and i,j∈K

λ∗
i,j ·
(∥∥ηF(zi)− ηF(zj)

∥∥2 − (ηL)2∥∥zi − zj
∥∥2
)

+ ∑
i>j and i,j∈K

µ∗
i,j ·
〈
ηF(zi)− ηF(zj)), zj − zi

〉
+ ∑

ℓ∈[n]
γ
(ℓ)
1 (w)(zk+ 1

2
[ℓ]− zk[ℓ] + ηF(zk)[ℓ])

+ ∑
ℓ∈[n]

γ
(ℓ)
2 (w)(zk+1[ℓ]− zk[ℓ] + ηF(zk+ 1

2
)[ℓ]). (9)

Due to constraints satisfied by the EG iterates, the non-negativity of Expression (9) clearly
implies that ∥F(zk)∥2 − ∥F(zk+1)∥2 is non-negative. However, Expression (9) is in fact an
infinite family of polynomials rather than a single one. Expression (9) corresponds to a
different polynomial for every integer n. To directly search for the solution, we would
need to solve an infinitely large SOS program, which is clearly infeasible. By exploring the
symmetry in Expression (9), we show that it suffices to solve a constant size SOS program.

12In the unconstrained setting, the tangent residual is simply the norm of the operator rtan
(F,Rn)

(z) =
∥F(z)∥.
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Let us first expand Expression (9) as follows:

∑
ℓ∈[n]

(
(ηF(zk)[ℓ])

2 − (ηF(zk+1)[ℓ])
2 + ∑

i>j and i,j∈K
λ∗

i,j

((
ηF(zi)[ℓ]− ηF(zj)[ℓ]

)2 − (ηL)2(zi[ℓ]− zj[ℓ]
)2
)

+ ∑
i>j and i,j∈K

µ∗
i,j
(
ηF(zi)[ℓ]− ηF(zj)[ℓ])

)(
zj[ℓ]− zi[ℓ]

)
+ γ

(ℓ)
1 (w)(zk+ 1

2
[ℓ]− zk[ℓ] + ηF(zk)[ℓ])

+ γ
(ℓ)
2 (w)(zk+1[ℓ]− zk[ℓ] + ηF(zk+ 1

2
)[ℓ])

)
. (10)

What we will argue next is that, due to the symmetry across coordinates, it suffices to directly
search for a single SOS proof that shows that each of the n summands in Expression (10)
is an SOS polynomial. More specifically, we make use of the following two key proper-
ties. (i) For any ℓ, ℓ′ ∈ [n], the ℓ-th summand and ℓ′-th summand are identical subject
to a change of variable;13 (ii) the ℓ-th summand only depends on the coordinate ℓ, i.e.,
variables in {zi[ℓ], ηF(zi)[ℓ]}i∈K and does not involve any other coordinates.14 We solve
the following SOS program, whose solution can be used to construct {λ∗

i,j, µ∗
i,j}i>j,i,j∈K

and {γ
(ℓ)
1 (w), γ

(ℓ)
2 (w)}ℓ∈[n] so that each of the summands in Expression (10) is an SOS

polynomial.

Input Fixed Polynomials. We use x to denote (x0, x1, x2) and y to denote (y0, y1, y2). Interpret xi
as zk+ i

2
[ℓ] and yi as ηF(zk+ i

2
)[ℓ] for 0 ≤ i ≤ 2. Observe that h1(x, y) and h2(x, y) come from the EG

update rule on coordinate ℓ. gL
i,j(x, y) and gm

i,j(x, y) come from the ℓ-th coordinate’s contribution in
the Lipschitzness and monotonicity constraints.

• h1(x, y) := x1 − x0 + y0 and h2(x, y) := x2 − x0 + y1.
• gL

i,j(x, y) := (yi − yj)
2 − C · (xi − xj)

2 for any 0 ≤ j < i ≤ 2.a

• gm
i,j(x, y) := (yi − yj)(xj − xi) for any 0 ≤ j < i ≤ 2.

Decision Variables of the SOS Program:

• pL
i,j ≥ 0, and pm

i,j ≥ 0, for all 0 ≤ j < i ≤ 2.

• q1(x, y) and q2(x, y) are two degree 1 polynomials in R[x, y].

Constraints of the SOS Program:

s.t. y2
0 − y2

2 + ∑
2≥i>j≥0

pL
i,j · gL

i,j(x, y) + ∑
2≥i>j≥0

pm
i,j · gm

i,j(x, y)

+q1(x, y) · h1(x, y) + q2(x, y) · h2(x, y) ∈ SOS[x, y].
(11)

aC represents (ηL)2. Larger C corresponds to a larger step size and makes the SOS program harder
to satisfy. Through binary search, we find that the largest possible value of C is 1 while maintaining
the feasibility of the SOS program.

Figure 3: Our SOS program in the unconstrained setting.

The proof of the following theorem is based on a feasible solution to the SOS program in
Figure 3.
Theorem 4. Let F : Rn → Rn be a monotone and L-Lipschitz operator. Then for any k ∈ N, the
EG algorithm with step size η ∈ (0, 1

L ) satisfies ∥F(zk)∥2 ≥ ∥F(zk+1)∥2.

Proof. Since F is monotone and L-Lipschitz, we have

⟨F(zk+1)− F(zk), zk − zk+1⟩ ≤ 0

13Simply replace {zi[ℓ]}i∈K and {ηF(zi)[ℓ]}i∈K with {zi[ℓ
′]}i∈K and {ηF(zi)[ℓ

′]}i∈K .
14We mainly care about the polynomials arise from the constraints. Although γ

(ℓ)
1 (w) and

γ
(ℓ)
2 (w) could depend on other coordinates, we show that it suffices to consider polynomials in

{zi[ℓ], ηF(zi)[ℓ]}i∈K .
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and ∥∥∥F(zk+ 1
2
)− F(zk+1)

∥∥∥2
− L2

∥∥∥zk+ 1
2
− zk+1

∥∥∥2
≤ 0.

We simplify them using the update rule of EG and ηL < 1. In particular, we replace zk − zk+1
with ηF(zk+ 1

2
) and zk+ 1

2
− zk+1 with ηF(zk+ 1

2
)− ηF(zk).

〈
F(zk+1)− F(zk), F(zk+ 1

2
)
〉
≤ 0, (12)∥∥∥F(zk+ 1

2
)− F(zk+1)

∥∥∥2
−
∥∥∥F(zk+ 1

2
)− F(zk)

∥∥∥2
≤ 0. (13)

Note that

∥F(zk)∥2 − ∥F(zk+1)∥2 + 2 · LHS of Inequality(12) + LHS of Inequality(13)

=∥F(zk)∥2 − ∥F(zk+1)∥2 + 2 ·
〈

F(zk+1), F(zk+ 1
2
)
〉
− 2 ·

〈
F(zk), F(zk+ 1

2
)
〉

+
∥∥∥F(zk+ 1

2
)
∥∥∥2

− 2 ·
〈

F(zk+1), F(zk+ 1
2
)
〉
+ ∥F(zk+1)∥2

−
∥∥∥F(zk+ 1

2
)
∥∥∥2

+ 2 ·
〈

F(zk), F(zk+ 1
2
)
〉
− ∥F(zk)∥2 = 0.

Thus, ∥F(zk)∥2 − ∥F(zk+1)∥2 ≥ 0.

Corollary 2 is implied by combing Lemma 4, Lemma 12, Theorem 4 and the fact that
η ∈ (0, 1

L ).

Corollary 2. Let F(·) be a monotone and L-Lipschitz operator mapping from Rn to Rn and
let z∗ ∈ Rn be a solution of the VI. For arbitrary starting point z0 ∈ Z , let {zk, zk+ 1

2
}k≥0

be the iterates of the EG algorithm with step size η ∈ (0, 1
L ). For any T ≥ 1 and D > 0,

GAP(zT) ≤ 1√
T

3D∥z0−z∗∥
η
√

1−(ηL)2
.

G.3.2 Last-Iterate Convergence of EG with Arbitrary Convex Constraints

We establish the last-iterate convergence rate of the EG algorithm in the constrained setting
for monotone VIs in this section. The plan is similar to the one in Appendix G.3.1. First, we
use the assistance of SOS programming to prove the monotonicity of the tangent residual
(Theorem 5), then combine it with the best-iterate convergence guarantee from Lemma 12 to
derive the last-iterate convergence rate (Theorem 6).

Due to the constraints, proving the monotonicity of the tangent residual becomes much more
challenging. The tangent residual in the constrained setting (Definition 4) is significantly
more complex than its counterpart in the unconstrained setting. In Lemma 13, we introduce
an auxiliary point c(z) for every point z that can be used to simplified the tangent residual.
Lemma 13. Let Z ⊆ Rn be a closed convex set and F : Z → Rn be an operator. For any z ∈ Z ,

denote c(z) := ΠN(z)

[
− F(z)

]
the projection of −F(z) on the normal cone N(z). Then we have

• rtan(z) = ∥F(z) + c(z)∥,

• ⟨F(z) + c(z), c(z)⟩ = 0,

• ⟨F(z) + c(z), a⟩ ≥ 0, ∀a ∈ N(z).

Proof. According to the definition of c(z), rtan(z) = ∥F(z) + c(z)∥ follows from Lemma 5.

Since c(z) = ΠN(z)

[
− F(z)

]
, we know that for all a ∈ N(z),

⟨−F(z)− c(z), a − c(z)⟩ ≤ 0. (14)
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Note that c(z) ∈ N(z) and N(z) is a cone. By substituting a = 0 and a = 2 · c(z) in (14), we
get

⟨−F(z)− c(z), c(z)⟩ = 0.
Therefore, for all a ∈ N(z), we have

⟨−F(z)− c(z), a⟩ = ⟨−F(z)− c(z), a − c(z)⟩ ≤ 0.

Next, we need to decide over which semialgebraic set that we want to certify the non-
negativity of rtan(zk)

2 − rtan(zk+1)
2. Naturally, we would like to use all constraints of Z ,

but there might be arbitrarily many of them. In the next paragraph, we argue how to reduce
the number of constraints.

Reducing the Number of Constraints. Suppose we are not given the description of
Z ⊆ Rn, and we only observe one iteration of the EG algorithm. In other words, we know
zk, zk+ 1

2
, and zk+1, as well as F(zk), F(zk+ 1

2
), and F(zk+1). To express the squared tangent

residual at zk and the squared tangent residual at zk+1, let us also assume that the vector

ck = ΠN(zk)

[
− F(zk)

]
and ck+1 = ΠN(zk+1)

[
− F(zk+1)

]
, and according to Lemma 13, we

have rtan(zk)
2 = ∥F(zk) + ck∥2, and rtan(zk+1)

2 = ∥F(zk+1) + ck+1∥2. Our plan is to derive a
set of inequalities that must be satisfied by these vectors. From this limited information, what
can we learn about Z? We can conclude that Z must lie in the intersection of the following
halfspaces: (a) ⟨ck, z⟩ ≤ ⟨ck, zk⟩. This is true because ck ∈ N(zk). (b) ⟨ak+ 1

2
, z⟩ ≥ ⟨ak+ 1

2
, zk+ 1

2
⟩,

where ak+ 1
2
= −(zk − ηF(zk)− zk+ 1

2
). This is true because zk+ 1

2
= ΠZ (zk − ηF(zk)), so

−ak+ 1
2
∈ N(zk+ 1

2
). (c) ⟨ak+1, z⟩ ≥ ⟨ak+1, zk+1⟩, where ak+1 = −(zk − ηF(zk+ 1

2
)− zk+1).

This is true because zk+1 = ΠZ (zk − ηF(zk+ 1
2
)), so −ak+1 ∈ N(zk+1). See Figure 4 for

illustration. Additionally, due to our definition of ck and ck+1 and Lemma 13, we know
that (d) ⟨ηF(zi) + ηci, ηci⟩ = 0 for i ∈ {k, k + 1}, and (e) ⟨ηF(zk+1) + ηck+1, ak+1⟩ ≤ 0 as
−ak+1 ∈ N(zk+1).

〈ck, z〉 = 〈ck, zk〉

〈
ak+ 1

2
, z
〉
=
〈
ak+ 1

2
, zk+ 1

2

〉
−ak+ 1

2

ck

−ak+1

〈ak+1, z〉 = 〈ak+1, zk+1〉

zk

zk − ηF (zk)

zk+1

zk − ηF
(
zk+ 1

2

)

zk+1
2

Z

zk+1 − ηF (zk+1)

N(zk+1)

zk+1 − ηck+1

Figure 4: Reducing the number of constraints.

Clearly, for any Z , the inequalities in (a) to (e) must hold, though there might be other
inequalities that are also true. Our goal is to prove that the tangent residual is non-increasing
even if only inequalities (a) to (e) hold. If we can do so, then we prove that tangent residual
is non-increasing for an arbitrary Z .

Formulation as SOS program. Similar to the unconstrained case, our plan is to search for
a certificate of non-negativity of the following expression

∥F(zk) + ck∥2 − ∥F(zk+1) + ck+1∥2 (15)
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over the semialgebraic set defined by the following polynomial constraints in variables{
{zi[ℓ], ηF(zi)[ℓ]}i∈{k,k+ 1

2 ,k+1} ∪ {ci[ℓ]}i∈k,k+1

}
ℓ∈[n]∥∥ηF(zi)− ηF(zj)

∥∥2 − (ηL)2∥∥zi − zj
∥∥2 ≤ 0, ∀i, j ∈ {k, k +

1
2

, k + 1}, (Lipschitzness)〈
ηF(zi)− ηF(zj), zj − zi

〉
≤ 0, ∀i, j ∈ {k, k +

1
2

, k + 1}, (Monotonicity)〈
ai, zi − zj

〉
≤ 0, ∀i ∈ {k +

1
2

, k + 1}, j ∈ {k, k +
1
2

, k + 1}, (−ai ∈ N(zi))〈
ηci, zj − zi

〉
≤ 0, ∀i ∈ {k, k + 1}, j ∈ {k, k +

1
2

, k + 1}, (ci ∈ N(zi))

⟨ηF(zi) + ηci, ηci⟩ = 0, ∀i ∈ {k, k + 1}, (Lemma 13)
⟨ηF(zk+1) + ηck+1, ak+1⟩ ≤ 0, (Lemma 13).

Similar to Section G.3, we multiply the operators, ck, and ck+1 with η for convenience. For-
tunately, the dimensional-dependent Expression (15) and semialgebraic set are symmetric
across coordinates, and more specifically, satisfy the two key properties in the unconstrained
case – Property (i) and (ii). Hence, we can represent all of the coordinates ℓ ≥ 1 with one
coordinate in the SOS program, and we can form a constant size SOS program to search for
a certificate of non-negativity for Expression (15) as shown in Figure 5.

In Theorem 5, we establish the monotonicity of the tangent residual. Our proof is based on
the solution to the degree-2 SOS program concerning polynomials in 8 variables (Figure 5).
Theorem 5. Let Z ⊆ Rn be a closed convex set and F : Z → Rn be a monotone and L-
Lipschitz operator. For any step size η ∈ (0, 1

L ) and any zk ∈ Z , the EG algorithm update satisfies
rtan
(F,Z)

(zk) ≥ rtan
(F,Z)

(zk+1).

Proof. Let ck = ΠNZ (zk)
(−F(zk)) and ck+1 = ΠNZ (zk+1)

(−F(zk+1)). By Lemma 13 we have

η2rtan(zk)
2 − η2rtan(zk+1)

2 = ∥ηF(zk) + ηck∥2 − ∥ηF(zk+1) + ηck+1∥2 (17)

Combining the monotonicity and L-Lipschitzness of F with the fact that L ≤ 1
η , we have

(−1) ·
(∥∥∥zk+ 1

2
− zk+1

∥∥∥2
−
∥∥∥ηF(zk+ 1

2
)− ηF(zk+1)

∥∥∥2
)
≤ 0, (18)

(−2) · ⟨ηF(zk+1)− ηF(zk), zk+1 − zk)⟩ ≤ 0, . (19)

Since zk+ 1
2
= ΠZ (zk − ηF(zk)) and zk+1 = ΠZ

(
zk − ηF(zk+ 1

2
)
)

, we can infer that zk −
ηF(zk)− zk+ 1

2
∈ N(zk+ 1

2
) and zk − ηF(zk+ 1

2
)− zk+1 ∈ N(zk+1), which further implies

(−2) ·
〈

zk − ηF(zk)− zk+ 1
2
, zk+ 1

2
− zk+1

〉
≤ 0, (20)

(−2) ·
〈

zk − ηF(zk+ 1
2
)− zk+1, zk+1 − zk

〉
≤ 0, (21)

(−2) ·
〈

ηck, zk − zk+ 1
2

〉
≤ 0, . (22)

Since zk − ηF(zk+ 1
2
)− zk+1 ∈ N(zk+1) and ck+1 = ΠNZ (zk+1)

(−F(zk+1)), by Lemma 13 we
have

(−2) ·
〈

ηck+1 + ηF(zk+1), zk − ηF(zk+ 1
2
)− zk+1

〉
≤ 0, (23)

(−2) · ⟨ηck+1 + ηF(zk+1),−ηck+1⟩ = 0. (24)

MATLAB code for the verification of the following identity is included in the supplementary
material under the name "verify_identity_EG.m".
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Input Fixed Polynomials. We use x to denote (x0, x1, x2), y to denote (y0, y1, y2) and w to denote
(w0, w2). Interpret xi as zk+ i

2
[ℓ] and yi as ηF(zk+ i

2
)[ℓ] for 0 ≤ i ≤ 2, w0 as ηck[ℓ] and w2 as ηck+1[ℓ].

Let b1 = −(x0 − y0 − x1) and b2 = −(x0 − y1 − x2).
Origin of Constraints. gL

i,j(x, y, w) and gm
i,j(x, y, w) come from the ℓ-th coordinate’s contribution in

the Lipschitzness and monotonicity constraints. Similarly, gb
i,j(x, y, w) and gw

i,j(x, y, w) come from the
ℓ-th coordinate contribution of fact that −ai and ci are in the normal cone of zi. Finally, hw

i (x, y, w)
and gr(x, y, w) comes from the ℓ-th coordinate contribution due to the inequalities of Lemma 13.

• gL
i,j(x, y, w) := (yi − yj)

2 − C · (xi − xj)
2 for any 0 ≤ j < i ≤ 2.a

• gm
i,j(x, y, w) := (yi − yj)(xj − xi) for any 0 ≤ j < i ≤ 2.

• gb
i,j(x, y, w) := bi · (xi − xj) for any i ∈ {1, 2}, 0 ≤ j ≤ 2.

• gw
i,j(x, y, w) := wi · (xj − xi) for any i ∈ {0, 2}, 0 ≤ j ≤ 2.

• gr(x, y, w) := (y2 + w2) · b2.
• hw

i (x, y, w) := (yi + wi) · wi for any i ∈ {0, 2}.

Decision Variables of the SOS Program:

• pL
i,j ≥ 0, and pm

i,j ≥ 0, for all 0 ≤ j < i ≤ 2.

• pb
i,j ≥ 0, for any i ∈ {1, 2}, 0 ≤ j ≤ 2.

• pw
i,j ≥ 0, for any i ∈ {0, 2}, 0 ≤ j ≤ 2.

• pr ≥ 0.
• qw

0 , qw
2 ∈ R.

Constraints of the SOS Program:

s.t. (y0 + w0)
2 − (y2 + w2)

2 + ∑
2≥i>j≥0

pL
i,j · gL

i,j(x, y, w) + ∑
2≥i>j≥0

pm
i,j · gm

i,j(x, y, w)

+∑i∈{1,2},2≥j≥0 pb
i,j · gb

i,j(x, y, w) + ∑i∈{0,2},2≥j≥0 pw
i,j · gw

i,j(x, y, w) ∈ SOS[x, y, w]

+pr · gr(x, y, w) + ∑i∈{0,2} qw
i · hw

i (x, y, w)
(16)

aC represents (ηL)2.

Figure 5: Our SOS program in the constrained setting.

Expression (17) + LHS of Inequality (18) + LHS of Inequality (19)
+LHS of Inequality (20) + LHS of Inequality (21) + LHS of Inequality (22)
+LHS of Inequality (23) + LHS of Inequality (24)

=∥ηF(zk) + ηck − zk + zk+ 1
2
∥2 (25)

+∥ηF(zk+ 1
2
) + ηck+1 − zk + zk+1∥2 ≥ 0, (26)

which concludes the proof.

Theorem 6. Let Z be a closed convex set in Rn, F(·) be a monotone and L-Lipschitz operator
mapping from Z to Rn and let z∗ ∈ Z be a solution of the VI. For arbitrary starting point z0 ∈ Z ,
let {zk, zk+ 1

2
}k≥0 be the iterates of the EG algorithm with step size η ∈ (0, 1

L ). Then for any T ≥ 1
and D > 0,

• GAP(zT) ≤ 1√
T

3D||z0−z∗ ||
η
√

1−(ηL)2
,

• rnat(zT) ≤ rtan(zT) ≤ 1√
T

3||z0−z∗ ||
η
√

1−(ηL)2
.
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Theorem 6 is implied by combing Lemma 4, Lemma 7, Lemma 12, Theorem 5 and the fact
that η ∈ (0, 1

L ).

H Optimistic Gradient Algorithm

In this section, we provide the last-iterate convergence rate of the OG algorithm. Similar
to Appendix G, we only show the last-iterate convergence rate for monotone VIs w.r.t.
the gap function for VIs (Definition 6), the natural residual (Definition 7) and the tangent
residual (Definition 4) and the potential function Φ(zk, wk). For the rest of this section, we
slightly abuse notation and refer to the gap function for VIs as the gap function. We show in
Appendix F (Appendix I resp.) last-iterate convergence rates for additional performance
measures for smooth monotone games (monotone VIs resp.).

Let Z ⊆ Rn be a closed convex set and F : Z → R be an operator. Let zk and wk be the k-th
iterate of the Optimistic Gradient Descent Ascent algorithm (OG) algorithm. Let z0, w0 be
arbitrary point in Z and {zk, wk}k≥0 be the iterated of the OG algorithm. The update rule
for any k ≥ 0 is as follows:

wk+1 = ΠZ [zk − ηF(wk)] = arg min
z∈Z

∥z − (zk − ηF(wk)) ∥

zk+1 = ΠZ [zk − ηF(wk+1)] = arg min
z∈Z

∥z − (zk − ηF(wk+1))∥
(27)

We prove last-iterate convergence rate for OG w.r.t. the gap function, natural residual and
tangent residual in Theorem 8 at Section H.4. The last-iterate convergence proof for OG is a
simple extension of the proof for EG. The last-iterate convergence rate for the performance
measures we mentioned follow from the last-iterate convergence rate of the following
monotonically decreasing potential function:

Φ(zk, wk) = ∥F(zk)− F(wk)∥2 + rtan(zk)
2 (28)

We can interpret Φ(zk, wk) as an upper bound of ∥wk+1 − zk∥ (Lemma 14).
Lemma 14. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be any operator and z1 =

ΠZ (z2 − ηF(z3)). Then ∥z1 − z2∥2 ≤ 2 · (η2rtan(z2)
2 + ∥ηF(z2)− ηF(z3)∥2).

Proof. Let ẑ2 = ΠZ (z2 − ηF(z2)). Then

∥z1 − z2∥ ≤ ∥z1 − ẑ2∥+ ∥z2 − ẑ2∥. (29)

By non-expansiveness of the projection mapping, we have that

∥z1 − ẑ2∥ ≤ ∥ηF(z2)− ηF(z3)∥ (30)

By Definition 7, Lemma 7 and Definition 4 we have that

∥z2 − ẑ2∥ =rnat
(ηF,Z)(z2)

≤rtan
(ηF,Z)(z2)

=ηrtan
(F,Z)(z2). (31)

By combining Inequality (29), Inequality (30), Inequality (31) and the fact that (a + b)2 ≤
2a2 + 2b2, we conclude

∥z1 − z2∥2 ≤
(
ηrtan(z2) + ∥ηF(z2)− ηF(z3)∥

)2 ≤ 2
(

η2rtan(z2)
2 + ∥ηF(z2)− ηF(z3)∥2

)
.

This appendix is organized as follows. In Section H.1, we derive best-iterate convergence
rate of OG w.r.t. the quantity ∥zk − wk+1∥. The rate of the best-iterate of OG is known
[WLZL21a, HIMM19], but we include the proof for completeness. In Corollary 3, we show
that the OG algorithm has bounded iterates (e.g. let z∗ be a solution to the VI, then for all
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k ≥ 0,∥zk − z∗∥, ∥wk − z∗∥ ≤ O(∥z0 − z∗∥+ ∥z0 − w0∥). In Section H.2, we show how to
derive a best-iterate convergence rate w.r.t. the potential function Φ(zk, wk). In Section H.3
we show that the potential function Φ(zk, wk) is monotonically decreasing across iterates
and finally in Section H.4 we show how to translate the last-iterate convergence rate w.r.t.
the potential function Φ(zk, wk) to the last-iterate convergence rate of the performance
measures of interest.

H.1 Best-Iterate Convergence of OG with Constant Step Size

The best-iterate convergence rate of OG is known [WLZL21a] and can easily be derived by
[HIMM19]. We include the proof here for completeness.
Lemma 15 ([HIMM19, WLZL21a]). Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a
monotone and L-Lipschitz operator, and z∗ be a solution to the corresponding VI. Let z0, w0 ∈ Z
be arbitrary starting points and {zk, wk}k≥0 be the iterates of the OG algorithm with step size
η ∈ (0, 1

2L ). Then for all T ≥ 0,

∥zT+1 − z∗∥2 +
T

∑
k=0

∥zk − wk+1∥2 ≤ 1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2. (32)

Proof of Lemma 15: In order to upper bound ∑T
k=0 ∥wk − wk+1∥2, we first relate the quantity

∥wk − wk+1∥2 to the weighted sum of {∥zt − wt+1∥2}0≤t≤k.
Lemma 16. For all k ≥ 0,

∥wk − wk+1∥2 ≤ 2(2η2L2)k∥w0 − z0∥2 +
k

∑
t=0

2(2η2L2)t∥zk−t − wk+1−t∥2. (33)

Moreover, for all T ≥ 0,

T

∑
k=0

∥wk − wk+1∥2 ≤ 2
1 − 2η2L2

(
∥w0 − z0∥2 +

T

∑
k=0

∥zk − wk+1∥2

)
. (34)

Proof. We first prove Equation (33) by induction. Note that for all k ≥ 0, we have

∥wk − wk+1∥2 = ∥wk − zk + zk − wk+1∥2

≤ 2∥wk − zk∥2 + 2∥zk − wk+1∥2. (35)

The inequality follows from the fact that (a + b)2 ≤ 2a2 + 2b2. Thus Equation (33) holds for
the base case k = 0. For the sake of induction, we assume that Equation (33) holds for some
k − 1 ≥ 0. Using the update rule of OG, the non-expansiveness of the projection operator,
and the L-Lipschitzness of F, for all k ≥ 1 we have

∥wk − zk∥2 ≤ η2∥F(wk−1)− F(wk)∥2 ≤ η2L2∥wk−1 − wk∥2. (36)

Combining Equation (35), Equation (36), and the induction assumption, we have

∥wk − wk+1∥2 ≤ 2∥wk − zk∥2 + 2∥zk − wk+1∥2

≤ 2η2L2∥wk−1 − wk∥2 + 2∥zk − wk+1∥2

≤ 2η2L2

(
2(2η2L2)k−1∥w0 − z0∥2 +

k−1

∑
t=0

2(2η2L2)t∥zk−1−t − wk−t∥2

)
+ 2∥zk − wk+1∥2

= 2(2η2L2)k∥w0 − z0∥2 +
k

∑
t=1

2(2η2L2)t∥zk−t − wk+1−t∥2 + 2∥zk − wk+1∥2

= 2(2η2L2)k∥w0 − z0∥2 +
k

∑
t=0

2(2η2L2)t∥zk−t − wk+1−t∥2.
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This completes the proof of Equation (33).

Summing Equation (33) with k = 0, 1, · · · , T, we have

T

∑
k=0

∥wk − wk+1∥2 ≤
T

∑
k=0

2(2η2L2)k∥w0 − z0∥2 +
T

∑
k=0

k

∑
t=0

2(2η2L2)t∥zk−t − wk+1−t∥2

=
T

∑
k=0

2(2η2L2)k∥w0 − z0∥2 +
T

∑
k=0

(
T−k

∑
t=0

2(2η2L2)t

)
· ∥zk − wk+1∥2

≤ 2
1 − 2η2L2

(
∥w0 − z0∥2 +

T

∑
k=0

∥zk − wk+1∥2

)
.

This completes the proof of Equation (34).

Back to the proof of Lemma 15. For all k ≥ 0, we have

∥zk+1 − z∗∥2 = ∥zk+1 − zk + zk − z∗∥2

= ∥zk − z∗∥2 + ∥zk+1 − zk∥2 + 2⟨zk+1 − zk, zk − z∗⟩
= ∥zk − z∗∥2 − ∥zk+1 − zk∥2 + 2⟨zk+1 − zk, zk+1 − z∗⟩
≤ ∥zk − z∗∥2 − ∥zk+1 − zk∥2 − 2η⟨F(wk+1), zk+1 − z∗⟩. (37)

The last inequality follows from ⟨zk+1 − zk + ηF(wk+1), zk+1 − z∗⟩ ≤ 0 as zk+1 =
ΠZ [zk − ηF(wk+1)].

Similarly, for all k ≥ 0, we have

∥zk+1 − wk+1∥2 = ∥zk+1 − zk + zk − wk+1∥2

= ∥zk+1 − zk∥2 + ∥zk − wk+1∥2 + 2⟨zk − wk+1, zk+1 − zk⟩
= ∥zk+1 − zk∥2 − ∥zk − wk+1∥2 + 2⟨zk − wk+1, zk+1 − wk+1⟩
≤ ∥zk+1 − zk∥2 − ∥zk − wk+1∥2 + 2η⟨F(wk), zk+1 − wk+1⟩. (38)

The last inequality follows from ⟨zk − ηF(wk)− wk+1, zk+1 − wk+1⟩ ≤ 0 as wk+1 =
ΠZ [zk − ηF(wk)].

We can further simplify Equation (37) using Fact 1:

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − ∥zk+1 − zk∥2 − 2η⟨F(wk+1), zk+1 − z∗⟩
= ∥zk − z∗∥2 − ∥zk+1 − zk∥2 − 2η⟨F(wk+1), zk+1 − wk+1⟩+ 2η⟨F(wk+1), z∗ − wk+1⟩
≤ ∥zk − z∗∥2 − ∥zk+1 − zk∥2 − 2η⟨F(wk+1), zk+1 − wk+1⟩. (39)

Summing Equation (38) and Equation (39), we get

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 − ∥zk+1 − wk+1∥2 + 2η⟨F(wk)− F(wk+1), zk+1 − wk+1⟩
≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 − ∥zk+1 − wk+1∥2 + 2η∥F(wk)− F(wk+1)∥∥zk+1 − wk+1∥
≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 − ∥zk+1 − wk+1∥2 + 2ηL∥wk − wk+1∥∥zk+1 − wk+1∥
≤ ∥zk − z∗∥2 − ∥zk − wk+1∥2 + η2L2∥wk − wk+1∥2, (40)

where we use Cauchy-Schwarz inequality in the second inequality and L-Lipschitzness of
F(·) in the third inequality. In the last inequality, we optimize the quadratic function in
∥zk+1 − wk+1∥.
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Summing Equation (40) for k = 0, 1, · · · , T and using Lemma 16, we get

∥zT+1 − z∗∥2 ≤ ∥z0 − z∗∥2 −
T

∑
k=0

∥zk − wk+1∥2 + η2L2
T

∑
k=0

∥wk − wk+1∥2

≤ ∥z0 − z∗∥2 −
T

∑
k=0

∥zk − wk+1∥2 +
2η2L2

1 − 2η2L2

(
∥w0 − z0∥2 +

T

∑
k=0

∥zk − wk+1∥2

)
(Lemma 16)

= ∥z0 − z∗∥2 − 1 − 4η2L2

1 − 2η2L2

T

∑
k=0

∥zk − wk+1∥2 +
2η2L2

1 − 2η2L2 ∥w0 − z0∥2.

Since η2L2 < 1
4 , we complete the proof by rearranging the above inequality. ■

H.1.1 Bounded Iterates of OG with Constant Step Size

Corollary 3. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator, and z∗ be a solution to the corresponding VI. Let z0, w0 ∈ Z be arbitrary starting points
and {zk, wk}k≥0 be the iterates of the OG algorithm with step size η ∈ (0, 1

2L ). Then for all k ≥ 1,

∥zk − z∗∥ ≤

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2,

∥wk − z∗∥ ≤2 ·

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2.

Proof. By Lemma 15 for k ≥ 1 we have that,

∥zk − z∗∥ ≤

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2.

Since 1−2η2L2

1−4η2L2 ≥ 1, ∥z0 − z∗∥ ≤
√

1−2η2L2

1−4η2L2 ∥z0 − z∗∥2 + 2η2L2

1−4η2L2 ∥w0 − z0∥2, which implies

that for all k ≥ 0,

∥zk − z∗∥ ≤

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2. (41)

For the second part of the proof, by Lemma 15 for all k ≥ 1 we have that,

∥wk − zk−1∥ ≤

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2. (42)

For all k ≥ 1, by triangle inequality, Inequality (41) and Inequality (42) we have that,

∥wk − z∗∥ ≤ ∥wk − zk−1∥+ ∥zk−1 − z∗∥ ≤ 2 ·

√
1 − 2η2L2

1 − 4η2L2 ∥z0 − z∗∥2 +
2η2L2

1 − 4η2L2 ∥w0 − z0∥2,

which concludes the proof.

H.2 Best-Iterate of Φ(zk, wk)

In this section, we use Lemma 15 to show that there exists t∗ ∈ [T] such that Φ(zt∗ , wt∗) =
O( 1

T ).
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Lemma 17. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator, and z∗ be a solution to the corresponding monotone VI. Let z0, w0 ∈ Z be arbitrary starting
point and {zk, wk}k≥0 be the iterates of the OG algorithm with step size η ∈ (0, 1

2L ). Then for all
k ≥ 1,

T

∑
k=1

(
∥ηF(zk)− ηF(wk)∥2 + η2rtan(zk)

2
)
≤ 4 + 6η4L4

1 − 4η2L2 ∥z0 − z∗∥2 +
16η2L2 + 6η4L4

1 − 4η2L2 ∥w0 − z0∥2.

Moreover, when w0 = z0
T

∑
k=1

(
∥ηF(zk)− ηF(wk)∥2 + η2rtan(zk)

2
)
≤ 4 + 6η4L4

1 − 4η2L2 ∥z0 − z∗∥2.

Proof of Lemma 17: For all k ≥ 1, we have

∥ηF(zk)− ηF(wk)∥2 ≤ η2L2∥zk − wk∥2 (L-Lipschitzness of F)

≤ η4L4∥wk−1 − wk∥2. (Equation (36))

Using Lemma 6 with the fact that zk = ΠZ [zk−1 − ηF(wk)], we have for all k ≥ 1,

η2rtan(zk)
2 ≤ ∥zk−1 − zk + ηF(zk)− ηF(wk)∥2

≤ 2∥zk−1 − zk∥2 + 2η2∥F(zk)− F(wk)∥2

≤ 2∥zk−1 − wk + wk − zk∥2 + 2η2L2∥wk − zk∥2 (L-Lipschitzness of F)

≤ 4∥zk−1 − wk∥2 + (4 + 2η2L2)∥wk − zk∥2

≤ 4∥zk−1 − wk∥2 + (4 + 2η2L2)η2L2∥wk−1 − wk∥2. (Equation (36))

Summing the above inequalities with k = 1, · · · , T and using Lemma 15 and Lemma 16, we
have

T

∑
k=1

(
∥ηF(zk)− ηF(wk)∥2 + η2rtan(zk)

2
)

≤ 4
T−1

∑
k=0

∥zk − wk+1∥2 + (4 + 3η2L2)η2L2
T−1

∑
k=0

∥wk − wk+1∥2

≤ 2(4 + 3η2L2)η2L2

1 − 2η2L2 ∥w0 − z0∥2 +

(
4 +

2(4 + 3η2L2)η2L2

1 − 2η2L2

) T−1

∑
k=0

∥zk − wk+1∥2

≤ 2(4 + 3η2L2)η2L2

1 − 2η2L2 ∥w0 − z0∥2 +

(
8η2L2

1 − 4η2L2 +
4(4 + 3η2L2)η4L4

(1 − 2η2L2) · (1 − 4η2L2)

)
∥w0 − z0∥2

+

(
4 − 8η2L2

1 − 4η2L2 +
2(4 + 3η2L2)η2L2

1 − 4η2L2

)
∥z0 − z∗∥2

=
16η2L2 + 6η4L4

1 − 4η2L2 ∥w0 − z0∥2 +
4 + 6η4L4

1 − 4η2L2 ∥z0 − z∗∥2,

which concludes the proof. ■

The following is a corollary of Lemma 17.
Corollary 4. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator, and z∗ be a solution to the corresponding VI. Let z0, w0 ∈ Z be arbitrary starting point
and {zk, wk}k≥0 be the iterates of the OG algorithm with step size η ∈ (0, 1

2L ). Then for all T ≥ 1,
there exists t∗ ∈ [T] such that

∥ηF(zt∗)− ηF(wt∗)∥2 + η2rtan(zt∗)
2 ≤ 1

T
4 + 6η4L4

1 − 4η2L2 ∥z0 − z∗∥2 +
1
T

16η2L2 + 6η4L4

1 − 4η2L2 ∥w0 − z0∥2.

Moreover, when w0 = z0

∥ηF(zt∗)− ηF(wt∗)∥2 + η2rtan(zt∗)
2 ≤ 1

T
4 + 6η4L4

1 − 4η2L2 ∥z0 − z∗∥2.
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H.3 Monotonicity of the Potential

In this section, we show that the potential function Φ(zk, wk) is monotonically decreasing
across iterates of OG. We only include the simplified proof discovered using a degree 2 SOS
program.
Theorem 7. Let Z ⊆ Rn be a closed convex set and F : Z → Rn be a monotone and L-Lipschitz op-
erator. Then for any zk, wk ∈ Z , the OG algorithm with step size η ∈ (0, 1

2L ) produces wk+1, zk+1 ∈
Z that satisfy ∥F(zk)− F(wk)∥2 + rtan(zk)

2 ≥ ∥F(zk+1)− F(wk+1)∥2 + rtan(zk+1)
2.

Proof. Let ck = ΠNZ (zk)
(−F(zk)) and ck+1 = ΠNZ (zk+1)

(−F(zk+1)). Lemma 13 implies that

η2rtan(zk)
2 + η2∥F(zk)− F(wk)∥2 −

(
η2rtan(zk+1)

2 + η2∥F(zk+1)− F(wk+1)∥2
)

= ∥ηF(zk) + ηck∥2 + η2∥F(zk)− F(wk)∥2

−
(
∥ηF(zk+1) + ηck+1∥2 + η2∥F(zk+1)− F(wk+1)∥2

)
(43)

Since F is monotone and L-Lipschitz, and η ∈ (0, 1
2L ), we have

(−2) · (⟨ηF(zk+1)− ηF(zk), zk+1 − zk⟩) ≤ 0, (44)

(−2) ·
(

1
4
∥zk+1 − wk+1∥2 − ∥ηF(zk+1)− ηF(wk+1)∥2

)
≤ 0. (45)

Since wk+1 = ΠZ
[
zk − ηF(wk)

]
and zk+1 = ΠZ

[
zk − ηF(wk+1)

]
, we have that zk −

ηF(wk)− wk+1 ∈ N(wk+1) and zk − ηF(wk+1)− zk+1 ∈ N(zk+1). Thus we have

(−1) · ⟨zk − ηF(wk)− wk+1, wk+1 − zk+1⟩ ≤ 0, (46)
(−2) · ⟨zk − ηF(wk+1)− zk+1, zk+1 − zk⟩ ≤ 0. (47)

Since c(zk) ∈ N(zk), we have that

(−1) · ⟨ηc(zk), zk − wk+1⟩ ≤ 0, (48)
(−1) · ⟨ηc(zk), zk − zk+1⟩ ≤ 0. (49)

According to Lemma 13 and the fact that zk − ηF(wk+1) − zk+1 ∈ N(zk+1), ck+1 ∈
ΠN(zk+1)

(−F(zk+1)) we have

(−2) · ⟨ηc(zk+1) + ηF(zk+1), zk − ηF(wk+1)− zk+1⟩ ≤ 0, (50)
(−2) · ⟨ηc(zk+1) + ηF(zk+1),−ηc(zk+1)⟩ = 0, . (51)

MATLAB code for the verification of the following identity is included in the supplementary
material under the name "verify_identity_OG.m".

Expression (43) + LHS of Inequality (44) + LHS of Inequality (45) + LHS of Inequality (46)
+ LHS of Inequality (47) + LHS of Inequality (48) + LHS of Inequality (49)
+ LHS of Inequality (51) + LHS of Inequality (50)

=

∥∥∥∥wk+1 − zk+1
2

+ ηF(wk)− ηF(zk)

∥∥∥∥2
(52)

+

∥∥∥∥ηF(zk) + ηc(zk)− zk +
wk+1 + zk+1

2

∥∥∥∥2
(53)

+ ∥zk − ηF(wk+1)− zk+1 − ηc(zk+1)∥2 (54)
≥ 0.

Thus, ∥F(zk)− F(wk)∥2 + rtan(zk)
2 ≥ ∥F(zk+1)− F(wk+1)∥2 + rtan(zk+1)

2.
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H.4 Combining Everything

In this section, we combine the results of the previous sections and show that Φ(zT , wT) =

O
(

1
T

)
and we show the last-iterate convergence rate for performance measures of iterest.

Lemma 18. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator. For any zk, wk ∈ Z , the OG algorithm update satisfies,

rtan
(F,Z)(wk+1) ≤

√
2(2 + ηL)

√
rtan
(F,Z)

(zk)2 + ∥F(wk)− F(zk)∥2.

Proof. Since wk+1 = ΠZ [zk − F(wk)], by using Lemma 6 we have

rtan
(F,Z)(wk+1) ≤

∥∥∥∥ zk − wk+1
η

+ F(wk+1)− F(wk)

∥∥∥∥
≤
∥∥∥∥ zk − wk+1

η

∥∥∥∥+ ∥F(wk)− F(zk)∥+ ∥F(zk)− F(wk+1)∥

≤ 1 + ηL
η

∥zk − wk+1∥+ ∥F(wk)− F(zk)∥. (L-Lipschitzness of F)

Using Lemma 7 and the non-expansiveness of the projection mapping, we have

∥zk − wk+1∥ ≤ ∥zk − ΠZ [zk − ηF(zk)]∥+ ∥ΠZ [zk − ηF(zk)]− wk+1∥
= rnat

(ηF,Z)(zk) + ∥ΠZ [zk − ηF(zk)]− ΠZ [zk − ηF(wk)]∥

≤ rtan
(ηF,Z)(zk) + η∥F(zk)− F(wk)∥

= ηrtan
(F,Z)(zk) + η∥F(zk)− F(wk)∥.

Combing the above two inequalities, we have

rtan
(F,Z)(wk+1) ≤ (1 + ηL)rtan

(F,Z)(zk) + (2 + ηL)∥F(wk)− F(zk)∥

≤
√

2(2 + ηL)
√

rtan
(F,Z)

(zk)2 + ∥F(wk)− F(zk)∥2. (a + b ≤
√

2
√

a2 + b2)

Combining Corollary 4, Theorem 7, Lemma 18, Lemma 7 and Lemma 4 we get O( 1√
T
)

last-iterate convergence rate in terms of the tangent residual, natural residual and gap
function for both zT and wT+1. The result is formally stated in Theorem 8.
Theorem 8. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator, and z∗ be a solution to the corresponding VI. Let z0, w0 ∈ Z be arbitrary starting
point, {zk, wk}k≥0 be the iterates of the OG algorithm with step size η ∈ (0, 1

2L ) and D0 :=√
(4 + 6η4L4)∥z0 − z∗∥2 + (16η2L2 + 6η4L4)∥w0 − z0∥2. Then for all T ≥ 1,

•
√

Φ(zT , wT) ≤ 1√
T

D0

η
√

1−4η2L2

• GAPF,Z ,D(zT) ≤ 1√
T
· D·D0

η·
√

1−4·(ηL)2
,

• rnat
F,Z (zT) ≤ rtan

F,Z (zT) ≤ 1√
T
· D0

η·
√

1−4·(ηL)2
,

• GAPF,Z ,D(wT+1) ≤ 1√
T
·
√

2(2+ηL)·D·D0

η·
√

1−4·(ηL)2
,

• rnat
F,Z (wT+1) ≤ rtan

F,Z (wT+1) ≤ 1√
T
·

√
2(2+ηL)D0

η·
√

1−4·(ηL)2
.
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I Last-Iterate Convergence for Variational Inequalities

Theorem 9. Let Z ⊆ Rn be a closed convex set, F(·) : Z → Rn be a monotone and L-Lipschitz
operator and z∗ ∈ Z be a solution to the corresponding VI. Then for any T ≥ 1, zT produced by EG
with any constant step size η ∈ (0, 1

L ) satisfies

• GAP(zT) ≤ 1√
T

3D||z0−z∗ ||
η
√

1−(ηL)2
,

• rnat(zT) ≤ rtan(zT) ≤ 1√
T

3||z0−z∗ ||
η
√

1−(ηL)2
.

• max{∥zT − zT+ 1
2
∥, ∥zT−zT+1∥

2 } ≤ 1√
T

3||z0−z∗ ||√
1−(ηL)2

.

Proof. The proof follows by combining Theorem 6 and Lemma 19.

Theorem 10. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator and z∗ ∈ Z a solution to the corresponding VI. Let z0, w0 ∈ Z be arbitrary starting
point and {zk, wk}k≥0 be the iterates of the OG algorithm with any step size η ∈ (0, 1

2L ). Let

D0 :=

√
(4+6η4L4)∥z0−z∗∥2+(16η2L2+6η4L4)∥w0−z0∥2

√
1−4(ηL)2

. Then for any T ≥ 1,

• GAPZ ,F,D(zT) ≤ DD0
η
√

T
,

• rnat
Z ,F,D(zT) ≤ rtan

Z ,F,D(zT) ≤ D0
η
√

T
,

• ∥zT − zT+1∥ ≤
√

3D0√
T

,

• GAPZ ,F,D(wT+1) ≤
√

2(2+ηL)·D·D0
η
√

T
,

• rnat
Z ,F,D(wT+1) ≤ rtan

Z ,F,D(wT+1) ≤
√

2(2+ηL)D0
η
√

T
,

• ∥wT − wT+1∥ ≤ 5D0√
T−1

.

Proof. The proof follows by Theorem 8 and Lemma 20.

I.1 Auxiliary Lemmas

Lemma 19. Let Z ⊆ Rn be a closed convex set and F : Z → Rn be a monotone and L-Lipschitz
operator. For any zk ∈ Z , the EG algorithm update with step-size η ∈ (0, 1

L ) satisfies,

max
{∥∥∥zk − zk+ 1

2

∥∥∥,
∥∥∥zk+ 1

2
− zk+1

∥∥∥} ≤ηrtan
(F,Z)(zk),

∥zk − zk+1∥ ≤2 · ηrtan
(F,Z)(zk).

Proof. We are only going to prove that max
{
∥zk − zk+ 1

2
∥, ∥zk+ 1

2
− zk+1∥

}
≤ ηrtan

(F,Z)
(zk),

since inequality ∥zk − zk+1∥ ≤ 2 · ηrtan
(F,Z)

(zk) follows by triangle inequality.

Since zk+ 1
2
= ΠZ

[
zk − ηF(zk)

]
, by Definition 7 we have that∥∥∥zk − zk+ 1

2

∥∥∥ = rnat
(ηF,Z)(zk) ≤ rtan

(ηF,Z)(zk) = ηrtan
(F,Z)(zk), (55)

where the first inequality follow by Lemma 7 and the second equality follows by Definition 4.
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Moreover, since zk+1 = ΠZ
[
zk − ηF(zk+ 1

2
)
]
, by non-expansiveness of the projection map-

ping, the fact that F is L-Lipschitz, that ηL ≤ 1 and Inequality (55), we have∥∥∥zk+ 1
2
− zk+1

∥∥∥ ≤
∥∥∥ηF(zk+ 1

2
)− ηF(zk)

∥∥∥ ≤ ηL
∥∥∥zk − zk+ 1

2

∥∥∥ ≤ ηrtan
(F,Z)(zk).

Lemma 20. Let Z ⊆ Rn be a closed convex set, F : Z → Rn be a monotone and L-Lipschitz
operator, and z∗ be a solution to the corresponding VI. Let z0, w0 ∈ Z be arbitrary starting point
and {zk, wk}k≥0 be the iterates of the OG algorithm with step size η ∈ (0, 1

2L ). Then for all k ≥ 1,

∥zk − zk+1∥ ≤
√

3η
√

Φ(zk, wk),

∥wk − wk+1∥ ≤5η
√

Φ(zk−1, wk−1).

Proof. By Lemma 14 and the fact that wk+1 = ΠZ (zk − ηF(wk)) for all k ≥ 0, we have that,

∥wk+1 − zk∥2 ≤ 2
(

η2rtan(zk)
2 + η2∥F(wk)− F(zk)∥2

)
= 2η2Φ(zk, wk). (56)

Thus, for all k ≥ 0, by combining Lemma 14, the fact that zk+1 = ΠZ (zk − ηF(wk+1),
L-Lipschitzness of F, Inequality (56), the fact that η2L2 ≤ 1

4 we have that for all k ≥ 0,

∥zk+1 − zk∥2 ≤2
(

η2rtan(zk)
2 + η2∥F(wk+1)− F(zk)∥2

)
≤2
(

η2rtan(zk)
2 + η2L2∥wk+1 − zk∥2

)
≤2η2

(
rtan(zk)

2 + 2 · η2L2Φ(zk, wk)
)

≤2η2
(

rtan(zk)
2 +

Φ(zk, wk)

2

)
≤3 · η2Φ(zk, wk). (57)

Moreover for all k ≥ 1, by triangle inequality, Inequality (56), Inequality (57) and Theorem 7,
we have that,

∥wk+1 − wk∥ ≤∥wk+1 − zk∥+ ∥zk − zk−1∥+ ∥wk − zk−1∥

≤η ·
√

2Φ(zk, wk) + η ·
√

3Φ(zk−1, wk−1) + η
√

2Φ(zk−1, wk−1)

≤5η
√

Φ(zk−1, wk−1).

J Non-Monotonicity of Several Standard Performance Measures

We conduct numerical experiments by trying to find saddle points in constrained bilinear
games using EG, and verified that the following performance measures are not mono-
tone: the (squared) natural residual, ∥zk − zk+ 1

2
∥2, ∥zk − zk+1∥2, maxz∈Z ⟨F(z), zk − z⟩,

maxz∈Z ⟨F(zk), zk − z⟩.
All of our counterexamples are constructed by trying to find a saddle point in bilinear games
of the following form:

min
x∈X

max
y∈Y

x⊤Ay − b⊤x − c⊤y (58)

where X ,Y ⊆ R2, A is a 2 × 2 matrix and b, c are 2-dimensional column vectors. All of the
instances of the bilinear game considered in this section have X ,Y = [0, 10]2. We denote by

Z = X × Y and by F(x, y) =
(

Ay − b
−A⊤x + c

)
: Z → Rn. We remind readers that finding a

saddle point of bilinear game (58), is equivalent to solving the corresponding monotone VI
with operator F(z) on set Z .
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J.1 Non-Monotonicity of the Natural Residual and its Variants

Performance Measure: Natural Residual. Let A =

[
1 2
1 1

]
, b = c =

[
1
1

]
. Running

the EG algorithm on the corresponding VI problem with step-size η = 0.1 starting at
z0 = (0.3108455, 0.4825575, 0.4621875, 0.5768655)T has the following trajectory:

z1 = (0.24923465, 0.47967569, 0.43497808, 0.57458145)T ,

z2 = (0.19396855, 0.48164918, 0.40193211, 0.56061753)T .

Thus we have

rnat(z0)
2 =0.15170013184049996,

rnat(z1)
2 =0.13617654362050116,

rnat(z2)
2 =0.16125792556139756.

It is clear that the natural residual is not monotone.In Figure 6, the red line is the squared
natural residual and the blue line is the squared tangent residual across many iterations.

Performance Measure: ∥zk − zk+ 1
2
∥2. Note that the norm of the operator mapping defined

in [Dia20] is exactly 1
η · ∥zk − zk+ 1

2
∥. Let A =

[
0.50676631 0.15042569
0.46897595 0.96748026

]
, b = c =

[
1
1

]
.

Running the EG algorithm on the corresponding VI problem with step-size η = 0.1 starting
at z0 = (2.35037432, 0.00333996, 1.70547279, 0.71065999)T has the following trajectory:

z 1
2
=(2.35325656, 0, 1.72473848, 0.64633879)T ,

z1 =(2.35324779, 0, 1.72472791, 0.64605901)T ,

z1+ 1
2
=(2.35612601, 0, 1.74398258, 0.58145791)T

z2 =(2.35612201, 0, 1.74412844, 0.5815012)T ,

z2+ 1
2
=(2.35898819, 0, 1.76352876, 0.51694333)T .

Thus we have ∥∥∥z0 − z 1
2

∥∥∥2
=0.00452784581555656,∥∥∥z1 − z1+ 1

2

∥∥∥2
=0.004552329544896258,∥∥∥z2 − z2+ 1

2

∥∥∥2
=0.004552306444552208.

It is clear that the ∥zk − zk+ 1
2
∥2 is not monotone. In Figure 7, the red line is

∥zk−z
k+ 1

2
∥2

η2 and
the blue line is the squared tangent residual across many iterations.

Performance Measure: ∥zk − zk+1∥2. Let A =

[
0.50676631 0.15042569
0.46897595 0.96748026

]
, b = c =

[
1
1

]
.

Running the EG algorithm on the corresponding VI problem with step-size η = 0.1 starting
at z0 = (2.37003485, 0, 1.84327237, 0.25934775)T has the following trajectory:

z1 =(2.37267186, 0, 1.86351397, 0.1950396)T ,

z2 =(2.37524308, 0, 1.88388624, 0.13077023)T ,

z3 =(2.37774149, 0.00426125, 1.90438549, 0.06653856)T .

45



Thus we have

∥z0 − z1∥2 =0.004552214685275266,

∥z1 − z2∥2 =0.004552191904998012,

∥z2 − z3∥2 =0.004570327450598002.

It is clear that the ∥zk − zk+1∥2 is not monotone. In Figure 8, the red line is ∥zk−zk+1∥2

η2 and
the blue line is the squared tangent residual across many iterations.

J.2 Non-Monotonicity of the Gap Functions and its Variant

Performance Measure: Gap Function and maxz∈Z ⟨F(z), zk − z⟩. Let A =[
−0.21025101 0.22360196
0.40667685 −0.2922158

]
, b = c =

[
0
0

]
. One can easily verify that

⟨F(z), zk − z⟩ = ⟨F(zk), zk − z⟩, which further implies that maxz∈Z ⟨F(z), zk − z⟩ =
maxz∈Z ⟨F(zk), zk − z⟩ = GAP(zk), which implies that non-monotonicity of the
gap function implies non-monotonicity of maxz∈Z ⟨F(z), zk − z⟩. Running the EG
algorithm on the corresponding VI problem with step-size η = 0.1 starting at
z0 = (0.53095379, 0.29084076, 0.62132986, 0.49440498) has the following trajectory:

z1 = (0.53290086, 0.28009156, 0.62151204, 0.4981395)T ,

z2 = (0.5347502, 0.26947398, 0.62122195, 0.50222691)T .

One can easily verify that

GAP(z0) =0.6046398415472187,
GAP(z1) =0.58462873354003214,
GAP(z2) =0.5914026255469654.

It is clear that the duality gap is not monotone. In Figure 9, the red line is the gap function
and the blue line is the scaled squared tangent residual across many iterations.

Plots for the Numerical Experiments

In Figures 6-10, we plot the values of the non-monotone performance measures of interest
as well as the tangent residual properly scaled so that it can fit in the figure for more
iterations using the same instances as provided Appendix J.1 and J.2 with starting point
z0 = (0.25, 0.25, 0.25, 0.25)T and step size η = 0.1. Note that in Figures 6-9, the blue line
always corresponds to (scaled) tangent residual – our potential function, and the red line
corresponds to the performance measure stated at the top of the plot.
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Figure 6: Non-monotonicity of the Natural Residual
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Figure 7: Non-monotonicity of ∥zk − zk+1/2∥2
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Figure 8: Non-monotonicity of ∥zk − zk+1∥2
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Figure 9: Non-monotonicity of Variants of Gap Functions. Here we have scaled the tangent
residual ×100 to make the plot clear.
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Figure 10: Numerical experiments on bilinear game (58) with A =[
0.50676631 0.15042569
0.46897595 0.96748026

]
, b = c =

[
1
1

]
, initial point z0 = (0.25, 0.25, 0.25, 0.25)⊤

and step size η = 0.1. This is the same bilinear game we used in Figure 7 and 8.
Performance Measures: the blue line is tangent residual; the red line is natural residual; the
gray line is ∥zk − zk+1/2∥2/η2; the green line is ∥zk − zk+1∥2/η2. Non-monotonicity of the
natural residual is clear. Non-monotonicity of ∥zk − zk+1/2∥2 and ∥zk − zk+1∥2 are better
illustrated in Figure 7 and 8.
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