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Abstract

Self-play via online learning is one of the premier ways to solve large-scale two-
player zero-sum games, both in theory and practice. Particularly popular algo-
rithms include optimistic multiplicative weights update (OMWU) and optimistic
gradient-descent-ascent (OGDA). While both algorithms enjoy O(1/T ) ergodic
convergence to Nash equilibrium in two-player zero-sum games, OMWU offers
several advantages including logarithmic dependence on the size of the payoff
matrix and Õ(1/T ) convergence to coarse correlated equilibria even in general-
sum games. However, in terms of last-iterate convergence in two-player zero-sum
games, an increasingly popular topic in this area, OGDA guarantees that the duality
gap shrinks at a rate of (1/

√
T ), while the best existing last-iterate convergence for

OMWU depends on some game-dependent constant that could be arbitrarily large.
This begs the question: is this potentially slow last-iterate convergence an inherent
disadvantage of OMWU, or is the current analysis too loose? Somewhat surpris-
ingly, we show that the former is true. More generally, we prove that a broad class
of algorithms that do not forget the past quickly all suffer the same issue: for any
arbitrarily small δ > 0, there exists a 2× 2 matrix game such that the algorithm ad-
mits a constant duality gap even after 1/δ rounds. This class of algorithms includes
OMWU and other standard optimistic follow-the-regularized-leader algorithms.

1 Introduction

Self-play via online learning is one of the premier ways to solve large-scale two-player zero-sum
games. Major examples include super-human AIs for Go, Poker [Brown and Sandholm, 2018], and
Stratego [Perolat et al., 2022] and alignment of large language models [Munos et al., 2023]. In
particular, Optimistic Multiplicative Weights Update (OMWU) and Optimistic Gradient Descent-
Ascent (OGDA) are two of the most well-known online learning algorithms. When applied to learning
a two-player zero-sum game via self-play for T rounds, the average iterates of both algorithms are
known to be an O(1/T )-approximate Nash equilibrium [Rakhlin and Sridharan, 2013, Syrgkanis
et al., 2015], while other algorithms, such as vanilla Multiplicative Weights Update (MWU) and
vanilla Gradient Descent-Ascent (GDA), have a slower ergodic convergence rate of O(1/

√
T ).
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For multiple practical reasons, there is growing interest in studying the last-iterate convergence of
these learning dynamics [Daskalakis and Panageas, 2019, Golowich et al., 2020b, Wei et al., 2021,
Lee et al., 2021]. In this regard, existing results seemingly exhibit a gap between OGDA and OMWU
— the duality gap of the last iterate of OGDA is known to decrease at a rate of O(1/

√
T ) [Cai

et al., 2022, Gorbunov et al., 2022], with no dependence on constants beyond the dimension and
the smoothness of the players’ utility functions of the game.1 In contrast, the existing convergence
rate for OMWU depends on some game-dependent constant that could be arbitrarily large, even
after fixing the dimension and the smoothness constant of the game [Wei et al., 2021].2 Given the
fundamental role of OMWU in online learning and its other advantages over OGDA (such as its
logarithmic dependence on the number of actions), it is natural to ask the following question:

Is the potentially slow last-iterate convergence an inherent disadvantage of OMWU? (*)

Results. In this work, we show that the answer to this question is yes, contrary to a common belief
that better analysis and better last-iterate convergence results similar to those of OGDA are possible
for OMWU. More specifically, we show the following.
Theorem (Informal). For OMWU with constant step size, there is no function f such that the
corresponding learning dynamics {(xt, yt)}t≥1 in two-player zero-sum games has a last-iterate
convergence rate of f(d1, d2, T ), where entries of the loss matrix are in [0, 1], and d1 and d2 are the
number of actions.3 More specifically, no function f can satisfy

1. DualityGap(xT , yT ) ≤ f(d1, d2, T ) for all T .

2. limT→∞ f(d1, d2, T ) → 0.

Our findings show that, despite the significantly superior regret properties of OMWU compared
to OGDA, its last-iterate convergence properties are remarkably worse. In turn, this counters
the viewpoint that “Follow-the-Regularized-Leader (FTRL) is better than Online Mirror Descent
(OMD)” [van Erven, 2021]: crucially, while OMWU is an instance of (optimistic) FTRL, OGDA is
an instance of optimistic OMD that cannot be expressed in the FTRL formalism.

We further show that similar negative results extend to several other standard online learning algo-
rithms, including a close variant of OGDA. More concretely, our main results are as follows.

• We identify a broad family of Optimistic FTRL (OFTRL) algorithms that do not forget about the
past quickly. We prove that, for any sufficiently small δ > 0, there exists a 2×2 two-player zero-sum
game such that, even after 1/δ iterations, the duality gap of the iterate output by these algorithms
is still a constant (Theorem 1). This excludes the possibility of showing a game-independent
last-iterate convergence rate similar to that of OGDA.

• We prove that many standard online learning algorithms, such as OFTRL with the entropy regu-
larizer (equivalently, OMWU), the Tsallis entropy family of regularizers, the log regularizer, and
the squared Euclidean norm regularizer, all fall into this family of non-forgetful algorithms and
thus all suffer from the same slow convergence. Also note that Optimistic OMD (OOMD), another
well-known family of algorithms, is equivalent to OFTRL when given a Legendre regularizer.
Therefore, OOMD with the entropy, Tsallis entropy, and log regularizer also suffer the same issue.4

• Finally, we also generalize our negative results from 2×2 games to 2n×2n games for any positive
integer n, strengthening our message that forgetfulness is generally needed in order to achieve fast
last-iterate convergence.

Main ideas. Intuitively, we trace the poor last-iterate convergence properties of OFTRL to its lack
of forgetfulness. The high-level idea of our hard 2× 2 game instance, parametrized by δ > 0, is as

1In finite two-player zero-sum games, the dependence is polynomial in the number of actions and the largest
absolute value in the payoff matrix.

2We note that there are also linear-rate last-iterate results for OGDA when we allow dependence on such
constants; see [Wei et al., 2021].

3Under the same condition, OGDA has a last-iterate convergence rate of poly(d1,d2)√
T

.
4We focus on optimistic variants of these algorithms since it is well-known that their vanilla version does not

converge in the last iterate at all, see e.g. [Mertikopoulos et al., 2018, Daskalakis and Panageas, 2018, Bailey and
Piliouras, 2018, Cheung and Piliouras, 2019].
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Figure 1: Comparison of the dynamics produced by three variants of OFTRL with different regu-
larizers (negative entropy, logarithmic regularizer, and squared Euclidean norm) and OGDA in the
same game Aδ defined in (2) for δ := 10−2. The bottom row shows the duality gap achieved by the
last iterates. The OFTRL variants exhibit poor performance due to their lack of forgetfulness, while
OGDA converges quickly to the Nash equilibrium. Since the regularizers in the first two plots are
Legendre, the dynamics are equivalent to the ones produced by optimistic OMD with the respective
Bregman divergences. In the plot for OMWU we observe that xt[1] can get extremely close to the
boundary (e.g., in the range 1 − e−50 < xt[1] < 1). To correctly simulate the dynamics, we used
1000 digits of precision. The red star, blue dot, and green square illustrate the key times T1, T2, T3

defined in our analysis in Section 3.
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Figure 2: Performance of OMWU on the game Aδ defined in eq. (2) for three choices of δ. In all
plots, the learning rate was set to η = 0.1. As predicted by our analysis, the length of the “flat region”
between iteration T1 (red star) and T2 (blue dot) scales inversely proportionally with δ.

follows. First, it has a unique Nash equilibrium at which one player is O(δ) close to the boundary of
the simplex. We refer to the first row of plots in Figure 1, where the equilibrium is noted by a blue dot
(note that we can plot only x[1], y[1] for each player, since x[2] = 1− x[1] and y[2] = 1− y[2]). As
can be seen, the iterates of OGDA and all three OFTRL variants initially have a two-phase structure.
In the first phase, they converge to the lower-right area denoted by a red star in Figure 1. Then, from
there all algorithms start moving towards the equilibrium. However, once they enter the vicinity of
the equilibrium, the behavior depends on the algorithms. For OGDA, the dynamics start spiraling
closer and closer to the equilibrium. On the other hand, for the OFTRL algorithms, the y player
has built up a lot of momentum in the direction of increasing y[1], and for this reason they cannot
“stop” near the equilibrium. Instead, they start to move away from the equilibrium, and enter a new
cycle where they move out towards the starting point of the learning process. This cycle repeats in
smaller and smaller semi-ellipses that slowly converge to equilibrium. Note that the semi-ellipses
correspond to the seesaw pattern in the equilibrium gap (second row of plots). OFTRL overshoots the
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equilibrium as it has built up a lot of "memory" of y[1] being better than y[2] along the phase from
the red star to the blue circle, and it requires many iterations to "forget" this fact. We show that as
we make δ, the parameter defining the nearness to the boundary, smaller and smaller, it takes longer
and longer for these semi-ellipses to get close to the equilibrium along the entire path, as illustrated
in Figure 2.

Our results are related to numerical observations made in the literature on solving large-scale extensive-
form games. There, algorithms based on the regret-matching+ (RM+) algorithm [Tammelin et al.,
2015], combined the counterfactual regret minimization [Zinkevich et al., 2007], perform by far
the best in practice. In contrast, the classical regret matching algorithm [Hart and Mas-Colell,
2000] performs much worse, in spite of similar regret guarantees. It was later discovered that RM+

corresponds to OGD, while RM corresponds to FTRL [Farina et al., 2021, Flaspohler et al., 2021]. It
was hypothesized that RM builds up too much negative regret at times, and thus is slow to adapt to
changes in the learning dynamics related to the strategy of the other player. These numerical results,
and the hypothesis, are consistent with our theoretical findings: FTRL (and thus RM) is not able to
“forget,” whereas OGD and OGDA can forget, and thereby quickly adapt to changes in which actions
should be played.

1.1 Related Work

The literature on last-iterate convergence of online learning methods in games is vast. In this section,
we will cover key contributions focusing on the case of interest for this paper: discrete-time dynamics
for two-player zero-sum normal-form games.

Convergence of OGDA. Average-iterate convergence of OGDA has been studied for minimax opti-
mization problems in both the unconstrained [Mokhtari et al., 2020] and constrained settings [Hsieh
et al., 2019]. Last-iterate convergence of OGDA in unconstrained saddle-point problems has been
shown in [Daskalakis et al., 2018, Golowich et al., 2020a]. In the (constrained) game setting, Wei et al.
[2021], Anagnostides et al. [2022] showed best-iterate convergence to the set of Nash equilibria in
any two-player zero-sum game with payoff matrix A at a rate of O(poly(d1, d2,maxi,j |Ai,j |)/

√
T )

using constant learning rate, where d1 and d2 are the number of actions of the players. A stronger
result was shown by Cai et al. [2022], who showed that the same rate applies to the last iterate.

Convergence of OMWU. Optimistic multiplicative weights update (also known as optimistic hedge) is
often regarded as the premier algorithm for learning in games. Unlike OGDA, it guarantees sublinear
regret with a logarithmic dependence on the number of actions, and it is known to guarantee only
polylogarithmic regret per player when used in self play even for general-sum games [Daskalakis et al.,
2021]. It can be applied with similar strong properties beyond normal-form games in several important
combinatorial settings [Takimoto and Warmuth, 2003, Koolen et al., 2010, Farina et al., 2022]. The
work by Daskalakis and Panageas [2019] established asymptotic last-iterate convergence for OMWU
in games using a small learning rate under the assumption of a unique Nash equilibrium. Similar
asymptotic results without the unique equilibrium assumption were also given by Mertikopoulos et al.
[2019], Hsieh et al. [2021]. Wei et al. [2021] were the first to provide nonasymptotic learning rates for
OMWU. Specifically, they showed a linear rate of convergence in games with a unique equilibrium,
albeit with a dependence on a condition number-like quantity that could be arbitrarily large given
fixed d1, d2, and maxi,j |Ai,j |.This result was later extended by Lee et al. [2021] to extensive-form
games. Unlike OGDA, no last-iterate convergence result for OMWU with a polynomial dependence
on only the natural parameters of the game (i.e., d1, d2, and maxi,j |Ai,j |) is known. As we show
in this paper, perhaps surprisingly, this is no coincidence: in general, OMWU does not exhibit a
last-iterate convergence rate that solely depends on these parameters, whether polynomial or not.

FTRL vs. OMD. While the last-iterate convergence of instantiations of Optimistic Online Mirror
Descent has been observed before, the properties of Follow-the-Regularized-Leader dynamics remain
mostly elusive. The present paper partly explains this vacuum: all standard instantiations of opti-
mistic FTRL cannot hope to converge in iterates with only a polynomial dependence on the natural
parameters of the game, unlike optimistic OMD. Complications in obtaining last-iterate convergence
results for continuous-time FTRL instantiations were already reported by Vlatakis-Gkaragkounis
et al. [2020], who showed the necessity of strict Nash equilibria.

Exploiting a no-regret learner. The forgetfulness property that we identify is closely related to the
concept of mean-based learning algorithms from Braverman et al. [2018]. Intuitively, mean-based
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algorithms are ones such that if the mean reward for action a is significantly greater than the mean
reward for action b, then the algorithm selects b with negligible probability. They show that MWU is
mean-based, along with Follow-the-Perturbed-Leader and the Exp3 bandit algorithm. Braverman
et al. [2018] shows that "mean-based" algorithms are exploitable when learning to bid in first-price
auctions, whereas Kumar et al. [2024] shows that OGD does not suffer from this exploitability issue.

2 Preliminaries and Problem Setup

We consider the standard setting of no-regret learning in a zero-sum game A ∈ [0, 1]d1×d2 . In
each iteration t ≥ 1, the x-player chooses xt ∈ X := ∆d1 while the y-player chooses yt ∈ Y :=
∆d2 . Then the x-player receives loss vector ℓtx = Ayt while the y-player receives loss vector
ℓty = −A⊤xt. The goal is to find or approximate a Nash equilibrium (x∗, y∗) to the game such
that x∗ ∈ argminx∈X maxy∈Y x⊤Ay and y∗ ∈ argmaxy∈Y minx∈X x⊤Ay. The approximation
error of a strategy pair (x, y) is measured by its duality gap, defined as DualityGap(x, y) =

maxy′∈Y x⊤Ay′ −minx′∈X x′⊤Ay, which is always non-negative.

Popular no-regret algorithms for solving the game include the Optimistic Follow-the-Regularized-
Leader (OFTRL) algorithm and the Optimistic Online Mirror Descent (OOMD) algorithm, both
defined in terms of a certain regularizer R : ∆d → R (for some general dimension d). The
corresponding Bregman divergence of R is DR(x, x

′) = R(x)−R(x′)−⟨∇R(x′), x− x′⟩, and the
regularizer is 1-strongly convex if DR(x, x

′) ≥ 1
2∥x− x′∥22 for all x, x′ ∈ ∆d.

Optimistic Online Mirror Descent (OOMD) Starting from an initial point (x1, y1) = (x̂1, ŷ1),
the OOMD algorithm with regularizer R and steps size η > 0 updates in each iteration t ≥ 2,

x̂t = argmin
x∈X

{η
〈
x, ℓt−1

x

〉
+DR(x, x̂

t−1)}, xt = argmin
x∈X

{η
〈
x, ℓt−1

x

〉
+DR(x, x̂

t)},

ŷt = argmin
y∈Y

{η
〈
y, ℓt−1

y

〉
+DR(y, ŷ

t−1)}, yt = argmin
y∈Y

{η
〈
y, ℓt−1

y

〉
+DR(y, ŷ

t)}.
(OOMD)

In particular, we call OOMD with a squared Euclidean norm regularizer, that is, R(x) = 1
2

∑d
i=1 x[i]

2

optimistic gradient-descent-ascent (OGDA). When R is the negative entropy, that is, R(x) =∑d
i=1 x[i] log x[i], we call the resulting OOMD algorithm optimistic multiplicative weights update

(OMWU). OGDA and OMWU have been extensively studied in the literature regarding their last-
iterate convergence properties in zero-sum games. Specifically, both OMWU and OGDA guarantee
that (xt, yt) approaches to a Nash equilibrium as t → ∞.

Optimistic Follow-the-Regularized-Leader (OFTRL) Define the cumulative loss vectors Lt
x :=∑t

k=1 ℓ
k
x and Lt

y :=
∑t

k=1 ℓ
k
y . The update rule of OFTRL with regularizer R is for each t ≥ 1,

xt = argmin
x∈X

{〈
x, Lt−1

x + ℓt−1
x

〉
+

1

η
R(x)

}
,

yt = argmin
y∈Y

{〈
y, Lt−1

y + ℓt−1
y

〉
+

1

η
R(y)

}
.

(OFTRL)

Throughout the paper, we consider the following regularizers:

• Negative entropy (R(x) =
∑d

i=1 x[i] log x[i]): the resulting OFTRL algorithm coincides with
OMWU defined by the OOMD framework previously.

• Squared Euclidean norm (R(x) = 1
2

∑d
i=1 x[i]

2): note that the resulting algorithm is different
from OGDA since the squared Euclidean norm is not a Legendre regularizer. As we will show, the
two algorithms behave very differently in terms of last-iterate convergence.

• Log barrier (R(x) =
∑d

i=1 − log(x[i])): we also call it the log regularizer.

• Negative Tsallis entropy regularizers (R(x) =
1−

∑d
i=1(x[i])

β

1−β parameterized by β ∈ (0, 1)).
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The 2-dimension case We denote x ∈ R2 as x = [x[1], x[2]]⊤. For d1 = 2, finding xt of OFTRL
reduces to the following 1-dimensional optimization problem:

xt[1] = argmin
x∈[0,1]

{
x · (Lt−1

x [1] + ℓt−1
x [1]− Lt−1

x [2]− ℓt−1
x [2]) +

1

η
R(x)

}
, xt[2] = 1− xt[1],

where we slightly abuse the notation and denote R(x) = R([x, 1− x]) for x ∈ [0, 1]. We introduce
two notations (the case for the y-player is similar): let etx = ℓtx[1]− ℓtx[2] be the difference between
the losses of the two actions, and Et

x =
∑t

k=1 e
k
x be the cumulative difference between the losses

of the two actions. For OFTRL, it is clear that the update of xt only depends on the differences
Et−1

x , et−1
x , the step size η, and the regularizer R. For this reason, we define Fη,R : R → [0, 1] as

follows:

Fη,R(e) := argmin
x∈[0,1]

{
x · e+ 1

η
R(x)

}
. (1)

We assume the function Fη,R is well-defined, i.e., the above optimization problem admits a unique
solution in [0, 1]. This is a condition easily satisfied, for example, when the regularizer R is strongly
convex. Then the OFTRL algorithm can be written as

xt[1] = Fη,R(E
t−1
x + et−1

x ), xt[2] = 1− xt[1].

The following lemma shows that the function Fη,R is non-increasing (we defer missing proofs in the
section to Appendix A).
Lemma 1 (Monotonicity of Fη,R). The function Fη,R(·) : R → [0, 1] defined in (1) is non-increasing.

We present some blanket assumptions on the regularizer, which are satisfied by all the regularizers
introduced before.
Assumption 1. We assume that the regularizer R satisfies the following properties: the function
Fη,R : R → [0, 1] defined in (1) is,

1. Unbiased: Fη,R(0) =
1
2 .

2. Rational: limE→−∞ Fη,R(E) = 1 and limE→+∞ Fη,R(E) = 0.

3. Lipschitz continuous: There exists L ≥ 0 such that F1,R is L-Lipschitz.

Item 1 in Assumption 1 shows that the initial strategy is the uniform distribution over the two actions,
which is standard in practice. The rational assumption (item 2 in Assumption 1) is natural since
otherwise, the algorithm could not even converge to a pure Nash equilibrium. The Lipschitzness (item
3 in Assumption 1) is implied when the regularizer is strongly convex over [0, 1]2 (see Lemma 4),
and it further implies Lipschitzness of Fη,R for any η as shown in the following proposition.
Proposition 1. The function Fη,R satisfies Fη,R(E/η) = F1,R(E). If F1,R is L-Lipschitz, then Fη,R

is ηL-Lipschitz for any η > 0.

3 Slow Convergence of OFTRL: A Hard Game Instance

We give negative results on the last-iterate convergence properties of OFTRL by studying its behavior
on a surprisingly simple 2×2 two-player zero-sum games. The game’s loss matrix Aδ is parameterized
by δ ∈ (0, 1

2 ) and is defined as follows:

Aδ :=

[
1
2 + δ 1

2

0 1

]
. (2)

3.1 Basic Properties

We summarize some useful properties of Aδ in the following proposition (missing proofs of this
section can be found in Appendix B).
Proposition 2. The matrix game Aδ satisfies:

6



1. Aδ has a unique Nash equilibrium x∗ = [ 1
1+δ ,

δ
1+δ ] and y∗ = [ 1

2(1+δ) ,
1+2δ
2(1+δ) ].

2. For a strategy pair (xt, yt), the loss vectors (i.e., gradients) for the two palyers are respc-
tively:

ℓtx = Aδy
t =

[
1
2 + δyt[1]
1− yt[1]

]
ℓty = −A⊤

δ x
t = −

[
( 12 + δ)xt[1]
1− 1

2x
t[1]

]
. (3)

Moreover,

etx = ℓtx[1]− ℓtx[2] = −1

2
+ (1 + δ)yt[1] ∈ [−1

2
,
1

2
+ δ]

ety = ℓty[1]− ℓty[2] = 1− (1 + δ)xt[1] ∈ [−δ, 1].

In particular, we notice that ety ≥ −δ. It implies that if the cumulative differences between the losses
of the two actions Et

y is large, then it takes Ω( 1δ ) iterations to make Et
y small (close to 0). This

has important implications for non-forgetful algorithms like OFTRL that look at the whole history
of losses. Since OFTRL chooses the strategy yt based on Et

y, it could be trapped in a bad action
for a long time even if the current gradients suggest that the other action is better. This is the key
observation for our main negative results on the slow last-iterate convergence rates of OFTRL.

The following lemma shows that in a particular region of (x, y), the duality gap is a constant.
Lemma 2. Let δ, ϵ ∈ (0, 1

2 ). For any x, y ∈ ∆2 such that x[1] ≥ 1
1+δ and y[1] ≥ 1

2 + ϵ, the duality
gap of (x, y) for game Aδ (defined in (2)) satisfies DualityGap(x, y) ≥ ϵ.

3.2 Slow Last-Iterate Convergence

We further require the following assumption on the regularizer R (and thus the function F1,R).
Assumption 2. Let L be the Lipschitness constant of F1,R in Assumption 1. Denote constant
c1 = 1

2 − F1,R(
1

20L ). There exist universal constants δ′, c2 > 0 and c3 ∈ (0, 1
2 ] such that for any

0 < δ ≤ δ′,

1. If F1,R(E) ≥ 1
1+δ , then F1,R(− c21

30Lδ + E) ≥ 1+c3
1+c3+δ

2. If F1,R(E) ≥ 1
2(1+δ) , then F1,R(− c3c

2
1

120L + δ
4L + E) ≥ 1

2 + c2.

Although Assumption 2 is technical, the idea is simple. Item 1 in Assumption 2 states that if a loss
difference E < 0 already makes F1,R(E) ≥ 1

1+δ , then the loss difference E′ = E − Ω( 1δ ) is able to
make F1,R(E

′) greater than F1,R(E) by a margin of Ω(δ). Item 2 in Assumption 2 states that if a
loss difference E already makes F1,R(E) ≥ 1

2(1+δ) ≈ 1
2 , then the loss difference E′ = E − Ω(1)

is able to make F1,R(E
′) greater than 1

2 by a constant margin c2. In Appendix C, we verify that
Assumption 2 holds for the negative entropy, squared Euclidean norm, the log barrier, and the negative
Tsallis entropy regularizers.

Now we present the main result of the section showing that even after Ω(1/δ) iterations, the duality
gap of the iterate output by OFTRL is still a constant.

Theorem 1. Assume the regularizer R satisfies Assumption 1 and Assumption 2. For any δ ∈ (0, δ̂),
where δ̂ is a constant depending only on the constants c1 and δ′ defined in Assumption 2, the
OFTRL dynamics on Aδ (defined in (2)) with any step size η ≤ 1

4L satisfies the following: there
exists an iteration t ≥ c1

3ηLδ with a duality gap of at least c2, a strictly positive constant defined in
Assumption 2.

Proof Sketch: We decompose the analysis into three stages as illustrated in Figure 3. We describe
the three stages and the high-level ideas of our proof below and defer the full proof to Appendix B.2.

• Stage I: Recall that x1[1] = y1[1] = 1
2 by Assumption 1. In Stage I, we show that xt[1] will

increase and denote T1 ≥ 1 the first iteration where xt[1] ≥ 1
1+δ . The existence of T1 can be

7
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2
− c1

2
1

2
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1
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1
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Ω( 1

ηδ ) iterations
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Figure 3: Pictorial depiction of the three stages incurred by the OFTRL dynamics in the game Aδ

defined in (2). The point z∗ denotes the unique Nash equilibrium. The times T1 and T2 are shown for
concrete instantiations of OFTRL in Figure 1 by a red star and a blue dot, respectively. The times Ts

and Th are defined in the proof of Theorem 1 in Appendix B.2.

proved by contradiction (Claim 1). Since xt[1] < 1
1+δ before the end of Stage I, the loss vector for

the y-player satisfies ety = ℓty[1]− ℓty[2] ≥ 0, meaning action 1 is worse than action 2. We use this
to show that finally yT1 [1] ≤ 1

2 − c1 with c1 defined in Assumption 2.

• Stage II: Now that we have yT1 [1] ≤ 1
2 − c1, we denote T2 > T1 the first iteration where

yT2 [1] ≥ 1
2(1+δ) > 1

2 − c1. The existence of T2 can be proved by contradiction again (Claim 2).
We remark that in order to increase yt[1], the loss vector must satisfies ety < 0. However, the game
matrix Aδ guarantees that ety ≥ −δ no matter what the x-player is playing (Proposition 2). Thus
by the ηL-Lipschitzness of Fη,R (Proposition 1), the per-iteration increase in yt[1] is at most ηLδ.
Therefore, we know T2 − T1 = Ω( c1

ηLδ ). But during [T1, T2], we have etx < 0 for the x-player
which implies its difference ET2

x ≤ ET1
x − Ω( 1

ηLδ ) further grows by at least Ω( 1
ηLδ ). In other

words, xt[1] is very close to 1, and the cumulative loss for action 1 is much smaller than that of
action 2.

• Stage III: We start with yT2 [1] ≥ 1
2(1+δ) . Moreover, yt[1] could keep increasing if xt[1] ≥ 1

1+δ

since that implies ety ≤ 0. Now the question is how long would the x-player stay close to the
boundary, i.e, xt[1] ≥ 1

1+δ . Since OFTRL-type algorithms are not forgetful, this happens only
when Et

x ≥ ET1
x (recall xT1 [1] ≥ 1

1+δ ). But we have at the end of stage II, ET2
x ≤ ET1

x − Ω( 1
ηLδ ).

Since etx ≤ 1, we know xt[1] ≥ 1
1+δ even after Ω( 1

ηLδ ) iterations. Define T3 = T2 + Ω( 1
ηLδ ).

During [T2, T3], the y-player always receives loss such that ety ≤ 0 and we prove that in the end
yT3 [1] ≥ 1

2 + c2 for some constant c2.

• Conclusion: Finally, we get one iteration T3 ≥ Ω( 1
ηLδ ) with xT3 [1] ≥ 1

1+δ and yT3 [1] ≥ 1
2 + c2.

Using Lemma 2, the duality gap of (xT3 , yT3) is at least c2 > 0.

Theorem 1 immediately implies the following (proof deferred to Appendix B.3).

Theorem 2. For optimistic FTRL with any regularizer satisfying Assumption 1 and Assumption 2
and constant steps size η ≤ 1

4L (L is defined in Assumption 1), there is no function f such that
the corresponding learning dynamics {(xt, yt)}t≥1 in two-player zero-sum games has a last-iterate
convergence rate of f(d1, d2, T ), where entries of the loss matrix are in [0, 1], and d1 and d2 are the
number of actions. More specifically, no function f can satisfy
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1. DualityGap(xT , yT ) ≤ f(d1, d2, T ) for all T .

2. limT→∞ f(d1, d2, T ) → 0.

Theorem 1 and Theorem 2 provide impossibility results for getting a last-iterate convergence rate
for OFTRL that solely depends on the bounded parameters, even in two-player zero-sum games.
Moreover, they show the necessity of forgetfulness for fast last-iterate convergence in games since
OGDA has a last-iterate convergence rate of O(poly(d1,d2)√

T
) [Cai et al., 2022, Gorbunov et al., 2022].

4 Extension to Higher Dimensions

In this section, we extend our negative results from 2 × 2 matrix games to games with higher
dimensions. We start by showing an equivalence result for a single player (say, the first player). We
assume that a decision maker is using OFTRL with a 1-strongly convex (w.r.t. the ℓ2 norm) and
separable regularizer R(x) = R1(x1) +R2(x2) to choose decisions. At a given time time t, they see
a loss ℓt ∈ [0, 1]2.

Now consider the following 2n-dimensional decision problem: The player uses OFTRL using the
regularizer R̂(x̂) =

∑n
i=1 R1(x̂i) +

∑2n
i=n+1 R2(x̂i), i.e., they use R1 on the first half of actions,

and R2 on the second half. This is again a 1-strongly convex regularizer (w.r.t. the ℓ2 norm). Suppose
the decision maker sees the rescaled and duplicated version of the losses ℓ1, . . . , ℓT from the 2-
dimensional case: ℓ̂ti =

1
nα ℓ

t
1 if i ≤ n, and ℓ̂ti =

1
nα ℓ

t
2 if i > n. The parameter α will be chosen later

based on the regularizer.

Now we wish to show that by choosing α in the right way, we get that the decisions for the
2-dimensional and 2n-dimensional OFTRL algorithms are equivalent. Let x1, . . . , xT be the 2-
dimensional OFTRL decisions, and let x̂1, . . . , x̂T be the 2n-dimensional OFTRL decisions. Then,
we want to show that

∑n
i=1 x̂

t
i = xt[1] and

∑2n
i=n+1 x̂

t
i = xt[2] for all t.

Lemma 3. Let the losses ℓ̂1, . . . , ℓ̂T satisfy the duplication procedure given in the preceding para-
graph. Then for any time t, we have x̂t

1 = · · · = x̂t
n and x̂t

n+1 = · · · = x̂t
2n.

Proof. Suppose not and let x̂t be the corresponding solution. Then the optimal solution is such that
x̂t
i ̸= x̂t

k for some i, k both less than n, or both greater than n. But then, by symmetry, we have that
there is more than one optimal solution to the OFTRL optimization problem at time t: the objective
is exactly the same if we create a new solution where we swap the values of x̂t

i and x̂t
k. This is a

contradiction due to strong convexity.

From lemma 3, we have that the OFTRL decision problem in 2n dimensions can equivalently be
written as a 2-dimensional decision problem: Since the first n entries must be the same, we can
simply optimize over that one shared value, say xt[1], which we use for all n entries, and similarly
we use xt[2] for the second half of the entries. Let Dupl : ∆2 → ∆2n be a function that maps the
two-dimensional solution into the corresponding duplicated 2n-dimensional solution. The equivalent
2-dimensional problem is then:

x̂t = Dupl

[
argmin
x∈ 1

n ·∆2

{
n

nα

〈
x,

t−1∑
τ=1

ℓτ + ℓt−1

〉
+

n

η
R1(x[1]) +

n

η
R2(x[2])

}]

= Dupl

[
1

n
· argmin

x∈∆2

{
n

nα

〈
1

n
x,

t−1∑
τ=1

ℓτ + ℓt−1

〉
+

n

η
R(x/n)

}]

= Dupl

[
1

n
· argmin

x∈∆2

{〈
x,

t−1∑
τ=1

ℓτ + ℓt−1

〉
+

nα+1

η
R(x/n)

}]
.

Euclidean regularizer: this regularizer is homogeneous of degree two. Choosing α = 1, the inner
minimization problem is exactly the same as the one solved by OFTRL in two dimensions.
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Entropy regularizer: we set α = 0 to get equivalence:

nR(x/n) =

2∑
i=1

x[i] log(x[i]/n) =

2∑
i=1

x[i] log x[i]−
2∑

i=1

x[i] log n =

2∑
i=1

x[i] log x[i]− log n.

Now we have equivalence because the last term is a constant that does not affect the argmin.

Log regularizer: we set α = −1 to get equivalence, using similar logic as for entropy:

R(x/n) =

2∑
i=1

− log(x[i]/n) = 2 log n+

2∑
i=1

− log x[i].

Tsallis entropy regularizer: we set α = −1 + β to get equivalence, using similar logic as for entropy:

nβR(x/n) = nβ ·
1−

∑2
i=1(

x[i]
n )β

1− β
=

nβ − 1

1− β
+

1−
∑2

i=1 x[i]
β

1− β
.

Putting together the above, we can now construct 2n× 2n loss matrices whose learning dynamics are
equivalent to the learning dynamics in our 2× 2 games given in the preceding sections. This implies
the following theorem.

Theorem 3. For any loss matrix A ∈ [0, 1]2×2, there exists a loss matrix Â ∈ [0, n−α]2n×2n such
that for the Euclidean (α = 1), entropy (α = 0), Tsallis (β ∈ (0, 1) and α = −1 + β), and log
(α = −1) regularizers, the resulting OFTRL learning dynamics are equivalent in the two games.

Combining Theorem 1 and Theorem 3, we have the following:
Corollary 1. In the same setup as Theorem 3, under Assumption 1 and Assumption 2, there exists a
game matrix Âδ ∈ [0, n−α]2n×2n such that the OFTRL learning dynamics with any step size η ≤ 1

4L

satisfies the following: there exists an iteration t ≥ c1
3ηLδ with a duality gap at least c2n−α.

Since α = 0 for the entropy regularizer, the same results hold more generally for games where one
player has more actions than the other. In particular, we can create a 2n× 2m game such that the
resulting dynamics are equivalent to those in a 2× 2 game. This does not work for the Euclidean and
log regularizers because the rescaling factors would be different for the row and column players.

5 Conclusion and Discussions

In this paper, we study last-iterate convergence rates of OFTRL algorithms with various popular
regularizers, including the popular OMWU algorithm. Our main results show that even in simple
2× 2 two-player zero-sum games parametrized by δ > 0, the lack of forgetfulness of OFTRL leads
to the duality gap remaining constant even after 1/δ iterations (Theorem 1). As a corollary, we show
that the last-iterate convergence rate of OFTRL must depend on a problem-dependent constant that
can be arbitrarily bad (Theorem 2). This highlights a stark contrast with OOMD algorithms: while
OGDA with constant step size achieves a O( 1√

T
) last-iterate convergence rate, such a guarantee is

impossible for OMWU or more generally OFTRL.

We now discuss several interesting questions regarding the convergence guarantees of learning in
games and leave them as future directions.

Best-Iterate Convergence Rates While we focus on the last-iterate (i.e., DualityGap(xT , yT )),
the weaker notion of best-iterate (i.e., mint∈[T ] DualityGap(xt, yt)) is also of both practical and
theoretical interest. By definition, we know the best-iterate convergence rate is at least as good as the
last-iterate convergence rate and could be much faster. This raises the following question:

What is the best-iterate convergence rate of OMWU/OFTRL?

To our knowledge, there are no concrete results on the best-iterate convergence rates of OMWU or
other OFTRL algorithms. For completeness, we show that for our counterexamples Aδ (defined in
(2)), OMWU enjoys a O( 1

lnT ) best-iterate convergence rate (Appendix D). Although the rate is very
slow, it does not depend on δ. It would be interesting to extend our negative results to the best-iterate
convergence rates (by finding a different hard game instance) or develop fast best-iterate convergence
rates of OMWU/OFTRL.
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Dynamic Step Sizes Our negative results hold for OFTRL with fixed step sizes. We conjecture
that the slow last-iterate convergence of OFTRL persists even with dynamic step sizes. In particular,
we believe our counterexamples still work for OFTRL with decreasing step sizes. This is because
decreasing the step size makes the players move even slower, and they may be trapped in the wrong
direction for a longer time due to the lack of forgetfulness. In Appendix E, we include numerical
results for OMWU with adaptive stepsize akin to Adagrad [Duchi et al., 2011], which supports our
intuition. We observe the same cycling behavior as for fixed step size. While the cycle is smaller
compared to that of fixed step sizes, the dynamics take more steps to finish each cycle. Investigating
the effect of dynamic step sizes on last-iterate convergence rates is an interesting future direction.

Slow Convergence due to Lack of Forgetfulness Our work shows that various OFTRL-type
algorithms do not have fast last-iterate convergence rates for learning in games. Our proof and hard
game instance build on the intuition that these algorithms lack forgetfulness: they do not forget the
past quickly. It would be interesting to formalize this intuition further and give a general condition
for algorithms under which they suffer slow last-iterate convergence.
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A Missing Proofs in Section 2

A.1 Proof of Lemma 1

Proof. Let e1 < e2. Denote x1 = Fη,R(e1) and x2 = Fη,R(e2). By definition, we have

e2(x2 − x1) ≤
1

η
(R(x1)−R(x2)) ≤ e1(x2 − x1).

Since e1 < e2, we have x2 ≤ x1.

A.2 Proof of Proposition 1

Proof. By definition,

Fη,R

(
E

η

)
= argmin

x∈[0,1]

{
x · E

η
+

1

η
R(x)

}
= argmin

x∈[0,1]

{x · E +R(x)} = F1,R(E).

The second claim on the Lipschitzness follows directly.

B Missing Proofs in Section 3

B.1 Proof of Lemma 2

Proof. We have

DualityGap(x, y) = max
ỹ∈∆2

x⊤Aδ ỹ − min
x̃∈∆2

x̃⊤Aδy

= max
i∈{1,2}

(A⊤
δ x)[i]− min

i∈{1,2}
(Ayδ)[i]

= (
1

2
+ δ)x[1]− (1− y[1]) (x[1] ≥ 1

1+δ , ϵ > 0)

≥ 1

2

1 + 2δ

1 + δ
− 1

2
+ ϵ

≥ ϵ.

B.2 Proof of Theorem 1

Proof. Recall that c1 = 1
2 − F1,R(

1
20L ) defined in Assumption 2. We fix any δ <

min{ 1
15 ,

c1
6 ,

c21
300 , δ

′}. Since δ < δ′, Assumption 2 holds. We will prove that there exists an it-
eration t ≥ c1

3ηLδ with duality gap c2.

14



Proof Plan: We decompose the analysis into three stages. Below, we describe the three stages and
the high-level ideas in our proof.

• Stage I: Recall that x1[1] = y1[1] = 1
2 . In Stage I, we show that xt[1] will increase and denote

T1 ≥ 1 the first iteration where xt[1] ≥ 1
1+δ . The existence of T1 can be proved by contradiction

(Claim 1). Since before the end of Stage I, xt[1] < 1
1+δ , the loss vector for the y-player satisfies

ety = ℓty[1] − ℓty[2] ≥ 0 meaning action 1 is worse than action 2. We will prove that finally
yT1 [1] ≤ 1

2 − c1.

• Stage II: Now we have that yT1 [1] ≤ 1
2 − c1, we denote T2 > T1 the first iteration where

yT2 [1] ≥ 1
2(1+δ) >

1
2 − c1. We remark that in order to increase yt[1], the loss vector must satisfy

ety < 0. However, the game matrix Aδ guarantees that ety ≥ −δ no matter what the x-player is
playing. Thus by the ηL-Lipschitzness of Fη,R (Lemma 4), the increase in yt[1] is at most ηLδ.
Therefore, we know T2 − T1 = Ω( c1

ηLδ ). But during [T1, T2], for the x-player, we have etx < 0

which implies its cumulative loss ET2
x ≤ ET1

x − Ω( 1
ηLδ ). In other words, xt[1] is very close to 1

and the cumulative loss for action 1 is much smaller than that of action 2.

• Stage III: Now we have yT2 [1] ≥ 1
2(1+δ) and that yt[1] could keep increasing if xt[1] ≥ 1

1+δ since
then the loss satisfies ety ≤ 0. Now the question is how long would the x-player stay close to the
boundary, i.e, xt[1] ≥ 1

1+δ . Since OFTRL-type algorithms are not forgetful, this happens only
when Et

x ≥ ET1
x (recall xT1 [1] ≥ 1

1+δ ). But we have at the end of stage II, ET2
x ≤ ET1

x − Ω( 1
ηLδ ).

Sinceetx is bounded by a constant, we know xt[1] ≥ 1
1+δ even after Ω( 1

ηLδ ) iterations. Define
T3 = T2 + Ω( 1

ηLδ ). During [T2, T3], the y-player always receives loss such that ety ≤ 0 and we
prove that yT3 [1] ≥ 1

2 + c2 for some constant c2.

• Conclusion Finally we get one iteration T3 ≥ Ω( 1
ηLδ ) with xT3 [1] ≥ 1

1+δ and yT3 [1] ≥ 1
2 + c2,

Using Lemma 2, the duality gap of (xT3 , yT3) is at least c2.

Stage I: We know x1[1] = y1[1] = 1
2 . We define (i) Ts > 1 to be the smallest iteration such that

xTs [1] ≥ 3
4 and (ii) T1 > Ts to be the smallest iteration such that xT1 [1] ≥ 1

1+δ . Both Ts and T1

must exist, and the reason will become clear in the following analysis. We postpone the proof of this
fact in Claim 1 at the end of this paragraph.

Notice from Proposition 2, the difference etx is lower bounded: etx ≥ − 1
2 for any t. Thus Et−1

x +

et−1
x ≥ − t

2 for any t ≥ 1. Since xTs [1] ≥ 3
4 > 1

2 , we know that ETs−1
x + eTs−1

x < 0. As Fη,R is
ηL-Lipschitz,

1

4
≤ xTs [1]− x1[1] ≤ ηL ·

∣∣ETs−1
x + eTs−1

x

∣∣ ≤ LηTs

2
.

This implies

Ts ≥
1

2ηL
.

Since xt[1] < 3
4 for all 1 ≤ t ≤ Ts − 1, we know that ety = ℓty[1] − ℓty[2] = 1 − (1 + δ)xt[1] >

1−3δ
4 ≥ 1

5 (as δ ≤ 1
15 ) for all 1 ≤ t ≤ Ts−1. Moreover, for all 1 ≤ t ≤ T1−1, we know that ety ≥ 0

as xt[1] ≤ 1
1+δ . Since the difference ety is at least 1/5 for all t ≤ Ts − 1 and remains non-negative

for all t ∈ [Ts, T1 − 1], we can conclude that for all Ts ≤ t ≤ T1

yt[1] = Fη,R(E
t−1
y + et−1

y ) ≤ Fη,R(E
t−1
y ),

and moreover

Fη,R(E
t−1
y ) ≤ Fη,R

(
Ts − 1

5

)
≤ Fη,R

(
1

20Lη

)
(Ts − 1 ≥ 1

2ηL − 1 ≥ 1
4Lη )

=
1

2
− c1.
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This completes the proof of Stage I, where xT1 [1] ≥ 1
1+δ and yT1 [1] ≤ 1

2 − c1. Before we proceed to
the next stage, we prove the existence of Ts and T1.

Claim 1. Ts and T1 exist.

Proof. It suffices to prove that T1 exists as it implies the existence of Ts. Assume for the sake of
contradiction that T1 does not exist, i.e., xt[1] < 1

1+δ for all t ≥ 1. By the same analysis as for Stage
I, we get yt[1] ≤ 1

2 − c1 for all t ≥ 1
2ηL . This implies etx = − 1

2 + (1 + δ)yt[1] ≤ δ
2 − c1 ≤ − c1

2 for
all t ≥ 1

2ηL . Then Et
x+etx → −∞ as t → +∞. As a consequence, xt[1] = Fη,R(E

t−1
x +et−1

x ) → 1

as t → +∞ by item 2 in Assumption 1. But this contradicts with the assumption that xt[1] < 1
1+δ

for all t ≥ 1. This completes the proof.

Stage II We define

T :=

⌊
c1

2Lηδ

⌋
∈
[

c1
3Lηδ

,
c1

2Lηδ

]
, (4)

where the lower bound on T holds since c1
6Lηδ ≥ c1

6δ ≥ 1. We note that T = Ω( 1δ ) since ηL ≤ 1
4 .

In Stage I, we have proved that yT1 [1] ≤ 1
2 − c1. Define Th = T1 + T . We claim that for all

t ∈ [T1, Th − 1], yt[1] ≤ 1
2 − c1

2 . To prove the claim, we first notice that −δ ≤ ety ≤ 1 for all t ≥ 1.
Then by the monotonicity and the ηL-Lipschitzness of Fη,R (Lemma 1 and Lemma 4), we get for all
t ∈ [T1, Th − 1],

yt[1] ≤ Fη,R(E
T1−1
y ) + ηLmax

{
ET1−1

y − Et−1
y − et−1

y , 0
}

≤ 1

2
− c1 + ηL · (t− T1 + 1)δ

≤ 1

2
− c1 + ηLTδ

≤ 1

2
− c1

2
,

where, in the second-to-last inequality, we use t− T1 + 1 ≤ T ≤ c1
2ηLδ by Equation (4).

Now we denote T2 ≥ Th the smallest iteration when yT2 [1] ≥ 1
2(1+δ) . The existence of T2 will

become clear in the following analysis, and we postpone the proof to Claim 2 at the end of the
discussion. Then for all t ∈ [Ts, T2 − 1], we have yt[1] ≤ 1

2(1+δ) , which implies etx ≤ 0. Moreover,
for all t ∈ [Ts, T1 + T − 1], since yt[1] ≤ 1

2 − c1
2 , we have

etx = ℓtx[1]− ℓtx[2]

= −1

2
+ (1 + δ)yt[1]

≤ −1 + (1 + δ)(1− c1)

2

≤ δ − c1
2

≤ −c1
4
. (δ ≤ c1

2 )

Then for any T1 + T ≤ t ≤ T2, we have

xt[1] = Fη,R(E
t−1
x + et−1

x )

≥ Fη,R(E
T1+T−1
x ) (et−1

x ≤ 0 for all t ∈ [T1 + T, T2])

≥ Fη,R

(
−c1T

4
+ ET1−1

x

)
≥ Fη,R

(
−c1T

5
+ ET1−1

x + eT1−1
x

)
,

where in the last inequality, we use the fact that c1T
20 ≥ c21

60ηLδ ≥ 1.

16



Claim 2. T2 exists.

Proof. Assume for the sake of contradiction that T2 does not exist, i.e., yt[1] < 1
2(1+δ) for all

t ≥ T1 (since we know yt[1] ≤ 1
2 − c1

2 for all t ∈ [T1, T1 + T − 1]). Then by the analysis of
Stage II and Equation (5), we have xt[1] ≥ 4

4+δ for all t ≥ T1. This implies ety ≤ − 3δ
5 for all

t ≥ T1. As a result, we have Et−1
y + et−1

y → −∞ as t → ∞. By item 2 in Assumption 1, we
get yt[1] = Fη,R(E

t−1
y + et−1

y ) ≥ 1
2 as t → ∞. But this contradicts with the assumption that

yt[1] < 1
2(1+δ) for all t ≥ T1. This completes the proof.

Stage III Recall that we have argued in State I that Fη,R(E
T1−1
x + eT1−1

x ) = F1,R(η(E
T1−1
x +

eT1−1
x )) = xT1 [1] ≥ 1

1+δ . By item 1 in Assumption 2, we have that

Fη,R

(
−c1T

10
+ ET1−1

x + eT1−1
x )

)
≥ Fη,R

(
− c21
30Lηδ

+ ET1−1
x + eT1−1

x )

)
= F1,R

(
− c21
30Lδ

+ η(ET1−1
x + eT1−1

x ))

)
≥ 1 + c3

1 + c3 + δ
, (5)

where the first inequality follows from the definition of T and the monotonicity of Fη,R (Lemma 1).

Now denote T3 = T2 + ⌊ c1T
10 ⌋ − 2. For any T2 ≤ t ≤ T3, we know that

xt[1] = Fη,R(E
t−1
x + et−1

x )

= Fη,R(E
T2−1
x + eT2−1

x +

t−1∑
k=T2

ekx + et−1
x − eT2−1

x )

≥ Fη,R(−
c1T

5
+ ET1−1

x + eT1−1
x +

t−1∑
k=T2

ekx + et−1
x − eT2−1

x )

≥ Fη,R(−
c1T

5
+ ET1−1

x + eT1−1
x +

c1T

10
− 2 + 2)

≥ Fη,R(−
c1T

10
+ ET1−1

x + eT1−1
x ))

≥ 1 + c3
1 + c3 + δ

. (by (5))

Note that 1+c3+δ ≤ 2. This implies ety = 1−(1+δ)xt[1] = − c3δ
1+c3+δ ≤ − c3δ

2 for all T2 ≤ t ≤ T3.
Moreover, we know that ety ≥ −δ for any t. Then

yT3 [1] = Fη,R(E
T3−1
y + eT3−1

y ))

≥ Fη,R(E
T2−1
y + eT2−1

y +

T3−1∑
k=T2

eky + eT3−1
y − eT2−1

y ))

≥ Fη,R(E
T2−1
y + eT2−1

y − c3δ(T3 − T2)

2
+ δ)

≥ Fη,R(E
T2−1
y + eT2−1

y − c3δc1T

40
+ δ) (T3 − T2 = ⌊ c1T

10 ⌋ − 2 ≥ c1T
20 )

≥ Fη,R(E
T2−1
y + eT2−1

y − c3c
2
1

120ηL
+ δ) (T ≥ c1

3ηLδ )

= F1,R(η(E
T2−1
y + eT2−1

y )− c3c
2
1

120L
+ ηδ)

≥ F1,R(η(E
T2−1
y + eT2−1

y )− c3c
2
1

120L
+

δ

4L
). (η ≤ 1

4L )
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Recall that F1,R(η(E
T2−1
y + eT2−1

y )) = Fη,R(E
T2−1
y + eT2−1

y ) = yT2 [1] ≥ 1
2(1+δ) . By item 2 in

Assumption 2, we have F1,R(η(E
T2−1
y + eT2−1

y )− c21
120L + δ

4L ) ≥
1
2 + c2 for some absolute constant

c2 > 0. Thus, we have yT3 [1] ≥ 1
2 + c2. Recall that xT3 [1] ≥ 1+c3

1+c3+δ ≥ 1
1+δ . Then by Lemma 2

we can conclude that the duality gap of (xT3 , yT3) is at least c2 > 0 . This completes the proof as
T3 ≥ T2 ≥ T ≥ c1

3ηLδ .

B.3 Proof of Theorem 2

Proof. Assume for the sake of contradiction that there is a function that satisfies both conditions.
Then for any A ∈ [0, 1]2×2, we have the OFTRL learning dynamics over A satisfies

1. DualityGap(xT , yT ) ≤ f(2, 2, T ) for all T .

2. limT→∞ f(2, 2, T ) → 0

Since limT→∞ f(2, 2, T ) → 0, we know there exists T0 > 0 such that for any t ≥ T0,
DualityGap(xt, yt) ≤ f(2, 2, t) < c2. Now let δ ≤ min{δ̂, c1

3ηLT0
}. Then by Theorem 1, we

know there exists an iteration t ≥ c1
3ηLδ ≥ T0 such that DualityGap(xt, yt) ≥ c2. This completes

the proof.

C Verifying Assumption 2 for Different Regularizers

Lemma 4. If the regularizer R is 1-strongly convex, then F1,R is 1
2 -Lipschitz.

Proof. Notice that R(x) +R(1− x) is 2-strongly convex. Thus by standard analysis (see e.g., Luo
[2022, Lemma 4]) we know F1,R is 1

2 -Lipschitz.

By Lemma 4, we can choose L = 1
2 for any 1-strongly convex regularizer in Assumption 1.

C.1 Negative Entropy

Lemma 5 (Assumption 2 holds for the entropy regularizer). Consider the negative entropy regularizer
R defined as R(x) = x log x+ (1− x) log(1− x). Then F1,R is L = 1

2 -Lipschitz. We have c1 and

Assumption 2 holds with δ′ =
c21

480L , c2 = F1,R(− c21
480L )−

1
2 , and c3 = 1

2 .

Proof. It is easy to verify that F1,R(x) has a closed-form representation

F1,R(E) =
1

1 + exp(E)
.

Thus L = 1
2 and c1 = 1

2 − F1,R(
1

20L ) is a universal constant. We also choose c3 = 1
2 .

If F1,R(E) ≥ 1
1+δ ≥ 1

1+δ , then we have E ≤ − log(1/δ). We note that

exp

(
− c21
30Lδ

)
≤ 1

1 + c3
⇒ 1

1 + exp (− c21
30Lδ − log(1/δ))

≥ 1 + c3
1 + c3 + δ

.

Thus δ ≤ δ1 =
c21

30L log(1+c3))
=

c21
30 log( 3

2 ))L
suffices for item 1 in Assumption 2.

If F1,R(E) ≥ 1
2(1+δ) = 1

1+1+2δ , we have E ≤ log(1 + 2δ). Note that since log(1 + 2y) ≤ 2y for
y > 0, we have

δ ≤ c3c
2
1

480L
⇒ − c3c

2
1

120L
+ log(1 + 2δ) < − c3c

2
1

240L

⇒ F1,R

(
− c3c

2
1

120L
+ E

)
> F1,R

(
− c3c

2
1

240L

)
.
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Thus item 2 in Assumption 2 holds for any δ ≤ δ2 =
c3c

2
1

480L =
c21

960L and c2 = F1,R(− c3c
2
1

240L )−
1
2 =

F1,R(− c21
480L )−

1
2 .

Combining the above, we know Assumption 2 holds for the negative entropy regularizer with
δ′ =

c21
960L and c2 = F1,R(− c21

480L )−
1
2 .

C.2 Squared Euclidean Norm Regularizer

Lemma 6 (Assumption 2 holds for the Euclidean regularizer). Consider the Euclidean regularizer
R defined as R(x) = 1

2 (x
2 + (1− x)2). We have L = 1

2 and c1 = 1
20 . We also have Assumption 2

holds with δ′ =
c21

480L , c2 =
c21

960L , and c3 = 1
2 .

Proof. It is easy to verify that F1,R(x) has a closed-form representation

F1,R =


1 if e ≤ −1
1−e
2 if e ∈ (−1, 1)

0 if e ≥ 1

Thus F1,R is L-Lipschitz with L = 1
2 . Moreover, c1 = 1

2 − F1,R(
1

20L ) =
1
20 . We choose c3 = 1

2

Fix any E such that F1,R(E) ≥ 1
1+δ . We have E ≤ − 1−δ

1+δ . We note that for any δ ≤ c21
15

F1,R

(
− c21
30Lδ

+ E

)
≥ F1,R(−1) = 1.

Thus δ ≤ δ1 =
c21
30L suffices for item 1 in Assumption 2.

Fix any E such that F1,R(E) ≥ 1
2(1+δ) = 1

2(1+δ) . We have E ≤ δ
1+δ ≤ δ. The for any δ ≤ c3c

2
1

240L ,
we have

F1,R

(
− c3c

2
1

120L
+ E

)
≥ F1,R

(
− c3c

2
1

240L

)
=

1

2
+

c3c
2
1

480L

Thus item 2 in Assumption 2 holds for any δ ≤ δ2 =
c21

480L and c2 =
c21

960L .

Combining the above, we know Assumption 2 holds for the negative entropy regularizer with
δ′ = min{δ1, δ2} =

c21
480L and c2 =

c21
960L .

C.3 Log Barrier

Lemma 7 (Assumption 2 holds for the log barrier). Consider the log barrier regularizer R defined
as R(x) = − log(x)− log(1− x). Then Assumption 2 holds with the following choices of constants:

1. c1 =
√

1
4 + 400L2 − 20L > 0.

2. c3 =
c21
60L .

3. c2 =

√
1
4 + (

c3c21
240L )

2 − c3c
2
1

240L > 0.

4. δ′ =
c3c

2
1

2160L .

Proof. By setting the gradient of x · E +R(x) to 0, we get a closed-form expression of F1,R:

F1,R(E) =


1
2 + 1

E −
√

1
4 + 1

E2 if E > 0
1
2 if E = 0
1
2 + 1

E +
√

1
4 + 1

E2 if E < 0.
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For x ∈ (0, 1), the F1,R function admits an inverse function defined as

F−1
1,R(x) =

2x− 1

x2 − x
.

Thus we know E0 := F−1
1,R(

1
1+δ ) = − 1−δ2

δ satisfies F1,R(E0) =
1

1+δ . Moreover, we can calculate

F−1
1,R

(
1 + c3

1 + c3 + δ

)
= − (1 + c3)

2 − δ2

(1 + c3)δ

= −1 + c3
δ

+
δ

1 + c3

= E0 −
c3
δ

− c3δ

1 + c3
.

Thus we can choose c3 =
c21
60L so that

E0 −
c21

30Lδ

= E0 −
c3
δ

− c3
δ

≤ E0 −
c3
δ

− c3δ

1 + c3
(since δ < 1/2 and c3 > 0)

Thus we have F1,R(E0 − c21
30Lδ ) ≥ F1,R(E0 − c3

δ − c3δ
1+c3

) ≥ 1+c3
1+c3+δ .

We calculate E1 := F−1
1,R(

1
2(1+δ) ) =

4(δ+δ2)
1+2δ ≤ 8δ. Then we can choose δ ≤ δ′ :=

c3c
2
1

2160L . Then we
have

F1,R(−
c3c

2
1

120L
+

δ

4L
+ E1)

≥ F1,R(−
c3c

2
1

120L
+ 9δ)

≥ F1,R(−
c3c

2
1

240L
)

=
1

2
+ c2,

where c2 =

√
1
4 + (

c3c21
240L )

2 − c3c
2
1

240L > 0 by the closed-form expression of F1,R.

C.4 Negative Tsallis Entropy

For x ∈ [0, 1], the negative Tsallis entropy is a family of regularizers parameterized by β ∈ (0, 1):

R(x) =
1− xβ

1− β
. (6)

The corresponding F1,R is defined as

F1,R(E) = argmin
x∈(0,1)

{
x · E +

1− xβ

1− β
+

1− (1− x)β

1− β

}
For x ∈ (0, 1), we note that F1,R has an inverse function

F−1
1,R(x) =

β

1− β

(
xβ−1 − (1− x)β−1

)
.

Lemma 8 (Assumption 2 holds for Tsallis entropy). Consider Tsallis entropy parameterized by
β ∈ (0, 1). Then L = 1

2β and Assumption 2 holds with the following choices of constants:

1. c1 = 1
2 − F1,R(

1
20L ) > 0.
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2. c3 = 1
2 .

3. c2 = F1,R(− c3c
2
1

240L )−
1
2 > 0.

4. δ′ = min{( c21(1−β)

120Lβc1−β
3

)
1
β

,
c3c

2
1

120 ,
1−β
8β · c3c

2
1

480L}.

Proof. We choose c3 = 1
2 . We have c1 = 1

2 − F1,R(
1

20L ) is a constant.

We note that

E0 := F−1
1,R(

1

1 + δ
) =

β

1− β

(
(1 + δ)1−β −

(
1 + δ

δ

)1−β
)

satisfies F1,R(E0) =
1

1+δ . Similarly, we calculate

E1 := F−1
1,R(

1 + c3
1 + c3 + δ

)

=
β

1− β

((
1 + c3 + δ

1 + c3

)1−β

−
(
1 + c3 + δ

δ

)1−β
)

≥ β

1− β

(
(1 + δ)

1−β − 2−
(
1 + c3 + δ

δ

)1−β
)

≥ β

1− β

(
(1 + δ)

1−β −
(
1 + δ

δ

)1−β

−
(c3
δ

)1−β

− 2

)

= E0 −
β

1− β

((c3
δ

)1−β

+ 2

)
where in the first inequality we use the fact that (1 + δ)1−β ≤ 2 since δ ≤ 1; the second inequality
we use the inequality (x+ y)1−β ≤ x1−β + y1−β . We note that

δ ≤ δ1 :=

(
c21(1− β)

120Lβc1−β
3

) 1
β

⇒ − c21
30Lδ

≤ − β

1− β

((c3
δ

)1−β

+ 2

)
. (7)

Thus for any δ ≤ δ1, we have for any E such that F1,R(E) ≥ 1
1+δ ,

− c21
30Lδ

+ E ≤ − c21
30Lδ

+ E0 ≤ E0 −
β

1− β

((c3
δ

)1−β

+ 2

)
≤ E1.

The above implies F1,R(− c21
30Lδ + E) ≥ 1+c3

1+c3+δ and the first item in Assumption 2 is satisfied.

We define E2

E2 := F−1
1,R

(
1

2(1 + δ)

)
=

β

1− β

(
(2 + 2δ)1−β −

(
2 + 2δ

1 + 2δ

)1−β
)

=
β

1− β
(2 + 2δ)1−β ·

(
1−

(
1

1 + 2δ

)1−β
)

≤ 4β

1− β
·

(
1−

(
1− 2δ

1 + 2δ

)1−β
)

≤ 4β

1− β
· 2δ

1 + δ

=
8βδ

(1− β)(1 + δ)
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where in the first inequality we use (2 + 2δ)1−β ≤ 4 since 0 ≤ δ ≤ 1 and β ∈ (0, 1); in the second
inequality we use the basic inequality (1− x)r ≤ 1− x for r, x ∈ (0, 1). We define

δ2 := min{c3c
2
1

120
,
1− β

8β
· c3c

2
1

480L
}

Then for any δ ≤ δ2 and E such that F1,R[E] ≥ 1
2(1+δ) , we have

− c3c
2
1

120L
+

δ

4L
+ E ≤ − c3c

2
1

120L
+

δ

4L
+ E2

≤ − c3c
2
1

120L
+

c3c
2
1

480L
+

8βδ

(1− β)(1 + δ)

≤ − c3c
2
1

120L
+

c3c
2
1

480L
++

c3c
2
1

480L

= − c3c
2
1

240L
.

Thus we know F1,R(− c3c
2
1

120L + δ
4L + E) ≥ F1,R(− c3c

2
1

240L ) and item 2 in Assumption 2 is satisfied by

c2 = F1,R(− c3c
2
1

240L )−
1
2 > 0.

Combining the above, we can choose δ̂ = min{δ1, δ2} so that both items in Assumption 2 hold for
δ ≤ δ̂.

D Problem Constant-Independent Best-Iterate Convergence Rate for OMWU

Our main results (Theorem 1 and Theorem 2) show that OMWU does not admit a last-iterate
convergence rate that depends solely on d1, d2, T . The counterexample proving these negative results
is Aδ ∈ [0, 1]2×2 parameterized by δ ∈ (0, 1

2 ) as defined in (2). Since d1 = d2 = 2 is constant, we
show OMWU does not admit a last-iterate convergence rate that only depends on T , and a dependence
on 1/δ is inevitable.

In this section, we show that for the class of games Aδ, OMWU enjoys O( 1
lnT ) best-iterate con-

vergence rate. We remark that although O( 1
lnT ) is a slow convergence rate, it does not depend on

1/δ and is much faster than the last-iterate rate, especially when δ → 0. The distinction between
the best-iterate convergence rate and the last-iterate convergence rate of OMWU is interesting, as
these two rates are comparable for OGDA. It remains an open question whether OMWU has a fast
best-iterate convergence rate in general.
Theorem 4 (Best-Iterate Convergence Rate of OMWU on Aδ). For any δ ∈ (0, 1

32 ), OMWU with
step size η ≤ 1

8 on Aδ (defined in (2)) satisfies for all T ≥ 2,

min
t∈[T ]

DualityGap(xt, yt) ≤ O

(
1

η lnT

)
.

Proof. We first present a sketch of the proof.

1. We denote T1 the first iteration when xt[1] ≥ 1
1+δ . We first show that OMWU has a linear

convergence rate between [1, T1] and finally DualityGap(xT1 , yT1) ≤ δ.

2. Since at time T1 the duality gap is only O(δ), the O( 1
lnT ) best-iterate convergence rate holds

until T ≥ Ω(exp( 1δ )). For all iterates after T ≥ Ω(exp( 1δ )), we will use the exp(O(1/δ))√
T

last-iterate convergence rate of OMWU [Wei et al., 2021].

3. Finally, we combine the convergence guarantees in the two phases to show a δ-independent
O( 1

lnT ) best-iterate convergence rate for all T ≥ 2.

We remark that OMWU has a closed-form update rule as follows:
xt[1] ∝ x1[1] · exp

(
−ηLt−1

x − ηℓt−1
x

)
,

yt[1] ∝ y1[1] · exp
(
−ηLt−1

y − ηℓt−1
y

)
.
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Phase I: Linear Convergence The OMWU dynamics starts with (x1, y1) such that x1[1], y1[1] =
1
2 . Denote T0 = ⌊ 1

η ⌋ + 1 < 2
η and T1 ≥ Ts the smallest iteration where xt[1] ≥ 1

1+δ . Using the
update rule, we have

xT0 [1]

xT0 [2]
=

x1[1]

x1[2]
· exp

(
−ηET0−1

x − ηeT0−1
x

)
≤ e

1
2ηT0 ≤ e,

where we use x1[1] = x1[2] = 1
2 and −et−1

x ≤ 1
2 by Proposition 2.

For all t ∈ [1, T0], since xt[1] ≤ e
e+1 and δ ≤ 1

2e , we have −ety = −(ℓty[1] − ℓty[2]) = ( 12 +

δ)xt[1] − 1 + 1
2x

t[1] ≤ δe−1
e+1 ≤ − 1

2(e+1) . For all t ∈ [1, T1 − 1], since xt[1] ≤ 1
1+δ , we have

−ety = −(ℓty[1]− ℓty[2]) = (12 + δ)xt[1]− 1 + 1
2x

t[1] ≤ 0.

Let us consider an auxiliary sequence {x̃t, ỹt} defined as the vanilla MWU algorithm with loss
vectors Lt−1

x and Lt−1
y as follows: for i ∈ {1, 2} and t ≥ 1

x̃t[i] ∝ x1[i] · exp{−ηLt−1
x [i]}

ỹt[i] ∝ y1[i] · exp{−ηLt−1
y [i]}

It is clear that

xt[1]

xt[2]
=

x̃t[1]

x̃t[2]
· exp{−ηet−1

x }, yt[1]

yt[2]
=

ỹt[1]

ỹt[2]
· exp{−ηet−1

y }.

Now for any t ∈ [T0, T1], we have

ỹt[1]

ỹt[2]
=

ỹ1[1]

ỹ1[2]
· exp

(
−ηET0−1

y

)
= exp

(
−ηET0−1

y

)
≤ exp

(
−η(T0 − 1)

2(e+ 1)

)
(−(ety ≤ 1

2(e+1) for all t ∈ [1, T0])

≤ exp

(
− 1

2(e+ 1)

)
<

8

9
. (T0 − 1 ≥ 1

η )

Then we have for any t ∈ [T0, T1],

yt[1]

yt[2]
=

ỹ1[1]

ỹ1[2]
· exp

(
−ηet−1

y

)
≤ ỹ1[1]

ỹ1[2]
<

8

9
. (−et−1

y ≤ 0 for all t ∈ [1, T1])

This implies yt[1] < 8
17 for all t ∈ [T0, T1]. Moreover, for all t ∈ [T0, T1], we have

etx = ℓtx[1]− ℓtx[2] =
1

2
+ δyt[1]− 1 + yt[1]

≤ −1

2
+

8

17
(1 + δ) (yt[1] ≤ 8

17 )

≤ − 1

68
. (δ ≤ 1

32 )

Moreover, since etx = ℓtx[1]− ℓtx[2] ≤ 1
2 + δ ≤ 1 always holds, we have for all t ∈ [1, T0 + 1],

xt[1]

xt[2]
≥ x1[1]

x1[2]
· exp

(
−ηEt−1

x − ηet−1
x

)
≥ e−ηt

≥ e−2 ≥ 1

9
. (t ≤ T0 + 1 < 2

η as η ≤ 1
8 )
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Combing the above, we get for all t ∈ [T0 + 1, T1],

xt[1]

xt[2]
≥ xT0 [1]

xT0 [2]
· exp

(
−2ηet−1

x −
t−2∑
k=T0

ekx + ηeT0−1
x

)

≥ 1

9
· exp

(
η(t− T0)

68
− η

2

)
(− 1

2 ≤ et−1
x ≤ − 1

68 for t ∈ [T0, T1])

≥ 1

9
· exp

(
η(t− T0)

68
− 1

16

)
. (η ≥ 1

8 )

≥ 1

10
· exp

(
η(t− T0)

68

)
.

Now we track the duality gap. Note that for t ∈ [T0, T1 − 1], we have xt[1] ≤ 1
1+δ and y1[1] ≤ 8

17 ≤
1

2(1+δ) . Therefore,

DualityGap(xt, yt) = max
i∈{1,2}

(A⊤
δ x

t)[i]− min
i∈{1,2}

(Aδy
t)[i]

= 1− 1

2
xt[1]− 1

2
− δyt[1]

≤ 1

2
(1− xt[1])

=
1

2(x
t[1]

xt[2] + 1)

≤ 1

2
· x

t[2]

xt[1]

Then we get for all t ∈ [T0, T1 − 1],

DualityGap(xt, yt) ≤ 5 · exp
(
−η(t− T0)

68

)
≤ 6 · exp

(
− ηt

68

)
(T0 < 2

η and exp( 1
34 ) ≤ 1 + 1

5 )

Since T0 < 2
η , we can conclude that for all t ∈ [1, T1], DualityGap(xt, yt) ≤ 6 · exp (− ηt

68 ).
Moreover, since xT1 [1] ≥ 1

1+δ and yT1 [1] < 8
17 ≤ 1

2(1+δ) , we have

DualityGap(xT1 , yT1) = max
i∈{1,2}

(A⊤
δ x

T1)[i]− min
i∈{1,2}

(Aδy
T1)[i]

= (
1

2
+ δ)xT1 [1]− 1

2
− δyT1 [1]

≤ δ.

To conclude, for each step t ∈ [1, T1], we have (1) a linear convergence rate DualityGap(xt, yt) ≤
6 exp(− ηt

68 ); (2) DualityGap(xT1 , yT1) ≤ δ.

Phase II: Sublinear Convergence with Dependence on 1/δ We defer the analysis to Appendix D.1.
By Corollary 2, we know for all t ≥ 1,

DualityGap(xt, yt) ≤ 1200e
10
δ

η
· 1√

t
.

Note that although this rate is universal for the last iterate, it has an exponential dependence on 1/δ.
Thus the last-iterate convergence rate is meaningful only after eΩ(1/δ) iterations.

Combining Both Phases for δ-independent Best-Iterate Convergence Rate Now we show how
to combine the two convergence guarantees in different phases to get a δ-independent O( 1

lnT )
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best-iterate convergence rate. For all T ∈ [2, T1], we can use the linear convergence rate
DualityGap(xt, yt) ≤ 6 exp(− ηt

68 ). We choose a constant Cη ≥ 1 such that

f(T ) :=
Cη

η lnT
≤ 6 exp

(
−ηT

68

)
,∀T ≥ 1.

Thus, the O( 1
η lnT ) best-iterate convergence rate holds for all T ≤ T1.

We also note that for all T ≥ e
36
δ , we have

1200e
10
δ

η
· 1√

T
=

1

η lnT
· 1200e

10
δ lnT√
T

≤ 1

η lnT
· 1200e

10
δ

T 1/3
( lnT√

T
≤ 1

T
1
3

)

≤ 1

η lnT
· 1200e

10
δ

e
12
δ

≤ 1

η lnT
. (δ ≤ 1

32 )

Thus O( 1
η lnT ) best-iterate convergence rate holds for T ≥ e

36
δ .

For other iterate T ≥ T1 but less than e
36
δ , we know

min
t∈[T ]

DualityGap(xT , yT ) ≤ DualityGap(xT1 , yT1)

≤ δ

≤ 36

lnT
. (T ≤ e

36
δ )

Thus we know the O( 1
η lnT ) best-iterate convergence rate holds for all T ≥ T1.

In conclusion, OMWU enjoys the following best-iterate convergence rate for all T ≥ 2

min
t∈[T ]

DualityGap(xt, yt) ≤ O

(
1

η lnT

)
.

D.1 Existing Results from [Wei et al., 2021]

We consider a matrix game A ∈ [0, 1]d1×d2 with a unique Nash equilibrium z∗ = (x∗, y∗). Below
we define some problem-dependent constants. We recall that X = ∆d1 and Y = ∆d2 and define

V∗(X ) := {x : x ∈ X , supp(x) ⊆ supp(x∗)} ,
V∗(Y) := {y : y ∈ Y, supp(y) ⊆ supp(y∗)} .

Definition 1. Define c = min{cx, cy} where

cx := min
x∈X\{x∗}

max
y∈V∗(Y)

(x− x∗)⊤Ay

∥x− x∗∥1
, cy := min

y∈Y\{y∗}
max

x∈V∗(X )

x⊤A(y∗ − y)

∥y∗ − y∥1
.

Definition 2. Define ϵ as

ϵ := min
j∈supp(z∗)

exp

(
− ln(d1d2)

zj∗

)
.

In the analysis, we sometimes use z = (x, y) ∈ X ×Y to simplify the notation. We denote KL(x, x′)
the Kullback–Leibler (KL) divergence. We slightly abuse the notation and denote KL(z, z′) =
KL(x, x′) + KL(y, y′).
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Theorem 5 (Adapted from Lemma 2 and Theorem 3 in [Wei et al., 2021]). Assume the game
A ∈ [0, 1]d1×d2 has a unique Nash equilibrium. Then OMWU with step size η ≤ 1

8 on A satisfies for
all T ≥ 1,

DualityGap(xT , yT ) ≤
√
d1d2 ·KL(z∗, zT ) ≤ C

√
d1d2

η
√
T

,

where C :=
8
√

128(128+2 ln(d1d2))√
15

· 1
ϵ3·c .

Proof. Define F (z) = (Ay,−A⊤x). We note that since A ∈ [0, 1]d1×d2 , its gradient norms ∥Fz∥2
are bounded by

√
d1d2. Then we have

DualityGap(zt) ≤ max
z∈X×Y

〈
F (z), zt − z

〉
= max

z∈X×Y
⟨F (z), z∗ − z⟩+

〈
F (z), zt − z∗

〉
≤ max

z∈X×Y

〈
F (z), zt − z∗

〉
≤ max

z∈X×Y
∥F (z)∥2

∥∥zt − z∗
∥∥
2

≤
√
d1d2 KL(z∗, zt),

where in the second inequality, we use the fact that z∗ is a Nash equilibrium; in the third inequality,
we use the triangle inequality; and in the last inequality, we use ∥Fz∥2 ≤

√
d1d2. The rest of the

proof follows from the proof of Lemma 2 and Theorem 3 in [Wei et al., 2021], where they give a
bound on KL(z∗, zt).

Constants for Aδ By Proposition 2, we know Aδ has a unique Nash equilibrium z∗ = (x∗ =
( 1
1+δ ,

δ
1+δ ), y

∗ = ( 1
2(1+δ) ,

1+2δ
2(1+δ) )). Now we calculate the parameter C for Aδ . We first calculate cx

and cy .
Proposition 3. For δ ∈ (0, 1) and Aδ defined in (2), cx and cy defined in Definition 1 satisfies

cx =
1

4
, cy =

δ

2
.

Hence, c := min{cx, cy} = δ
2 .

Proof. By Definition 1, we have

cx = min
x∈X\{x∗}

max
y∈V∗(Y)

(x− x∗)⊤Ay

∥x− x∗∥

= min
x[1]∈[0,1],x[1]̸= 1

1+δ

max
y[1]∈[0,1]

(1 + δ)y[1]− 1
2

2
·
x[1]− 1

1+δ∣∣∣x[1]− 1
1+δ

∣∣∣ = 1

4
.

Similarly, for cy we have

cy = min
y∈Y\{y∗}

max
x∈V∗(X )

x⊤A(y∗ − y)

∥y∗ − y∥1

= min
y[1]∈[0,1],y[1]̸= 1

2(1+δ)

max
x[1]∈[0,1]

(1 + δ)x[1]− 1

2
·

1
2(1+δ) − y[1]∣∣∣ 1
2(1+δ) − y[1]

∣∣∣ = δ

2
.

The completex the proof.

For ϵ defined in Definition 2, we can easily get ϵ = exp(− ln 4
δ

1+δ

) ≥ e−
3
δ since (1 + δ) ln 4 ≤ 3.

Plugging c = δ
2 and ϵ ≥ e−

3
δ into Theorem 5, we get the following last-iterate convergence rate of

OMWU on Aδ .
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Figure 4: Comparison of the dynamics produced by three variants of OFTRL with different regulariz-
ers (negative entropy, logarithmic regularizer, and squared Euclidean norm) and OGDA in the same
game Aδ defined in (2) for δ := 10−2 and adaptive step size with ϵ = 0.1. The bottom row shows
the duality gap achieved by the iterates.

Corollary 2. For any δ ∈ (0, 1), OMWU with step size η ≤ 1
8 on Aδ satisfies for all T ≥ 1,

DualityGap(xT , yT ) ≤ 1200e
10
δ

η
· 1√

T
,

Proof. By Theorem 5, we have

DualityGap(zt) ≤ C
√
d1d2

η
√
T

=
2C

η
√
T
,

where

C =
8
√

128(128 + 2 ln(d1d2))√
15

· 1

ϵ3 · c

≤ 300 · 1

e−
9
δ · δ

2

=
600e

9
δ

δ

≤ 600e
10
δ (x ≤ ex)

This completes the proof.

E Numerical experiments with adaptive stepsizes

In this section we present our numerical results when OFTRL and OOMD are instantiated with

adaptive stepsize [Duchi et al., 2011]: ηt = 1/
√
ϵ+

∑t−1
k=1 ∥ℓk∥2k with some constant ϵ > 0. We

present our numerical experiments in Figure 4, where we choose ϵ = 0.1.
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